3/EH-23 (iii) (Syllabus-2019)

(2)

Odd Semester, 2020

(Held in March, 2021)

CHEMISTRY

(Elective/Honours)

(Chem-EH-301)

(General Chemistry—III)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—I

(Inorganic)

(*Marks* : 18)

- **1.** (a) Discuss the variation of atomic and ionic radii of an element across the period and down the group.
 - (b) Electron gain enthalpy of chlorine is higher than that of fluorine. Explain. 1½
 - (c) What is catenation? Explain the uniqueness of carbon to catenate. $2\frac{1}{2}$

(d) Give one preparation and one use of lithium aluminum hydride.

OR

- **2.** (a) The oxidising character of elements increases and reducing character decreases as we move from left to right in a period. How would you explain this observation?
 - b) Arrange in decreasing order the acid strength of oxyacid of halogen of the type HOX (X = Cl, Br, I). Give reason to your answer and also indicate the Na salt of the above oxyacid used mainly as a disinfectant in the recent Covid-19 pandemic. 2+1=3
 - (c) Ionisation energies of C, N and O follow the order C < N > O. Explain. 2
 - (d) Give one method of preparation and one use of sodium thiosulphate. 2
- **3.** (a) Explain why most of the compound of transition metals are generally coloured.
 - (b) Lanthanides exhibit + 3 most common oxidation state whereas certain lanthanides also show + 2 and + 4 oxidation state. Explain.

3

2

2

- (c) Actinides have greater tendency to form complexes than lanthanides. Explain. 1½
- (d) What happens when-
 - (i) Ni(CO)₄ is heated above 150 °C;
 - (ii) ferric salt reacts with potassium ferrocyanide?

(Write down the balance chemical reaction wherever necessary.) $1\frac{1}{2}+1\frac{1}{2}=3$

OR

- **4.** (a) What is lanthanide contraction and what are its consequences? 1+2=3
 - (b) In the 1st transition series, oxidation state increases from Sc⁺³ to Mn⁺⁷ and then decreases back from Mn⁺⁷ to Zn²⁺. Give reason to your answer.
 - (c) What are transuranic elements? Give one example.
 - (d) What happens when—
 - (i) KMnO₄ is treated with KI solution in acidic medium;
 - (ii) UF_4 is treated with F_2 ?

(Write down the balance chemical reaction wherever necessary.) $1\frac{1}{2}+1\frac{1}{2}=3$

SECTION—II

(Organic)

(Marks : 19)

5. (a) How is acetic acid (CH₃COOH) prepared from acetonitrile (CH₃CN)? Write chemical equation and its mechanism.

1+1=2

- (b) Complete the following reactions: $1\times3=3$
 - (i) $CH_3COOH + CH_2N_2 \rightarrow ?$

- (c) What are organometallic compounds? Give a method for the preparation of Grignard reagent. Write chemical equation. $\frac{1}{2}+1+\frac{1}{2}=2$
- (d) Starting from ethyl acetoacetate, how will you synthesize succinic acid? 2½

4-21**/425**

(Turn Over)

2

4-21**/425**

(Continued)

OR

6. (a) Arrange the following acids in order of increasing acidity. Explain with appropriate reasons: 1½

$$\begin{array}{c|cccc} \mathrm{CH}_2\mathrm{-COOH} & \mathrm{COOH} & \mathrm{COOH} \\ | & | & \mathrm{CH}_2\mathrm{-COOH} \\ \end{array} , \quad \begin{array}{c|cccc} \mathrm{COOH} \\ \mathrm{COOH} \end{array} , \quad \begin{array}{c|ccccc} \mathrm{COOH} \\ \mathrm{COOH} \end{array}$$

(b) Identify the products in the following reactions: 1+1=2

(i)
$$CH_3 - C - C1 - \frac{NH_3}{\Lambda} ? - \frac{H_2O/H^{\oplus}}{}?$$

(ii)
$$R - C - OH - SOCl_2 \rightarrow ? R'COOH \rightarrow ?$$

- (c) Differentiate between resonance and tautomerism. 2
- (d) Using a suitable Grignard reagent, prepare the following compounds: 1+1=2

(ii) CH₃CH₂CH₃

- (e) Complete the following reactions: 1+1=2
 - (i) $CH_3CH_2CH_2CH_2Li +$

$$CH_2$$
 CH_2 H_2O ?

(ii)
$$CH_2 + H_2N - C - NH_2 \xrightarrow{EtONa}$$
?

- 7. (a) Give the synthesis of propylamine by Gabriel phthalimide reaction with mechanism.
 - (b) Explain, giving examples, why the α -H atom of nitro-alkanes is acidic. 1½
 - (c) How can you separate a mixture of 1° , 2° and 3° amines? Give chemical equations. $1\frac{1}{2}$
 - (d) Which of the following pairs of compounds is more basic? Give reasons: 1½×2=3

(i)
$$CH_3CH_2NH_2$$
 and \bigcirc NH_2

(ii)
$$CH_3$$
— O_2N — NH_2 and O_2N — NH_2

(e) Complete the following reactions: 2

(i)
$$\langle \bigcirc \rangle$$
-NH₂-Br₂/H₂O \rightarrow ?

(ii) $CH_3NH_2 + CHCl_3 + KOH \rightarrow ?$

OR

- **8.** (a) Nitration of aniline produces *m*-nitroaniline as major product even though the amino group is *o* and *p*-directing. Explain giving equations. 1½
 - (b) How will you prepare ethanamine from propanamide? Write its mechanism. 2
 - (c) Identify the products in the following reactions:

$$\begin{array}{c|c}
O \\
C \\
C \\
OH \\
\hline
\begin{array}{c}
(i) & NH_3 \\
(ii) & \Delta
\end{array}$$

$$\begin{array}{c}
Br_2/KOH \\
\hline
\begin{array}{c}
O+5 \circ C
\end{array}$$

$$\begin{array}{c}
CuCN/KCN
\end{array}$$

- (d) How will you carry out the following conversions? $1\frac{1}{2}\times2=3$
 - (i) Nitrobenzene to benzene
 - (ii) Aniline to p-hydroxyazobenzene

(e) Amines have higher boiling points than the hydrocarbons of corresponding molecular mass. Explain.

SECTION—III

(Physical)

(Marks: 19)

- **9.** (a) State Carnot's theorem and write an expression for the efficiency of the Carnot's engine. 1+1=2
 - (b) Derive an expression for variation of free energy with temperature and pressure.
 - (c) Derive the relation between K_p and K_c . $2\frac{1}{2}$
 - (d) The value of K_p for the reaction

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

is 1.06×10^5 at 25 °C. Calcualte the standard state free energy change (ΔG°) of the reaction at 25 °C. $(R = 8.314 \, \text{JK}^{-1} \, \text{mol}^{-1})$

4-21**/425**

(Turn Over)

4-21**/425**

Continued)

1

(9	1
•		

(10)

OR

- **10.** (a) Derive Gibbs-Helmholtz equation.
 - (b) State Le Chatelier's principle and discuss the effects of temperature and pressure on the following reaction: 1+2=3 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta H = -92 \cdot 38 \text{ kJ}$
 - (c) State and explain the law of mass action.
 - (d) Calculate the entropy change when 1 mole of ethanol is evaporated at 351 K. The molar heat of vaporisation of ethanol is 39.84 kJ mol⁻¹.
- **11.** (a) Explain the phenomenon of osmosis. 2
 - (b) What is van't Hoff factor? What is the cause of abnormal molecular weights of solutes in solution? 1+2=3
 - (c) Explain Brownian movement. 2
 - (d) A solution of $12.5 \,\mathrm{g}$ of non-volatile solute in 170 g of water gave boiling point elevation of $0.63 \,\mathrm{K}$. Calculate the molar mass of the solute. $(K_b = 0.52)$

OR

- **12.** (a) What are colloids? What are the differences between lyophilic and lyophobic colloids? 1+2=3
 - (b) Explain the phenomenon of Tyndall effect in colloids.

2

2

- (c) State Henry's law. What are its limitations?
- (d) At 298 K, the vapour pressure of ether is 442 mm of Hg. When 6·1 g of a substance was dissolved in 50 g of ether, the vapoure pressure fell to 410 mm. Calculate the molecular weight of the substance. (Molecular weight of ehter = 74)

 $\star\star\star$

3

2

2