1/EH-28 (i) (Syllabus-2015)

Odd Semester, 2020

(Held in March, 2021)

STATISTICS

(Elective/Honours)

[STEH-1 (TH)]

(Descriptive Statistics, Numerical Analysis and Probability)

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) What do you mean by qualitative data and quantitative data? Give examples.
 - (b) Explain with the help of an example, the concepts of statistical population and a sample.
 - (c) Explain the need and usefulness of graphical and diagrammatic representation of data. Explain briefly with rough sketches, the construction of a histogram for grouped data. 3+3=6

4-21/392

(Turn Over)

3

3

(2)

- (a) What do you understand by mode? Discuss its relative merits and demerits as a measure of central tendency. Also give two practical situations where you will recommend the use of mode.
 - (b) Define the raw and central moments of a frequency distribution. Express the raw moments of order r in terms of central moments. 2+4=6

Unit—II

- **3.** (a) Define correlation. Discuss its significance. 1+2=3
 - (b) Does high degree of correlation between the two variables signify the existence of cause and effect relationship between the two variables? Explain.
 - (c) Show that the correlation coefficient r is independent of the change of origin and scale.4
- **4.** (a) What are regression lines? Distinguish between regression and correlation. 2+3=5
 - (b) Show that the correlation coefficient between the observed and the estimated values of Y obtained from the line of regression of Y on X is the same as that between X and Y.
- 4-21**/392**

(Continued)

- 5. (a) Prove the following : 2+2=4(i) $E \equiv (1-\nabla)^{-1}$
 - (*ii*) $\nabla E \equiv E \nabla$
 - (b) What is meant by interpolation? Establish Newton's forward interpolation formula. 2+5=7
- **6.** (a) State and prove Lagrange's interpolation formula. 6
 - (b) What is numerical integration? Write down the conditions for the validity of Simpson's one-third rule for numerical integration. 2+3=5

UNIT—IV

- **7.** (a) Explain the following terms with examples : 2+2+2=6
 - (i) Random experiment
 - (ii) Trial and event
 - (iii) Simple event and compound event
 - (b) Give the classical definition of probability. Show that the occurance of an event lies between 0 and 1. What do you mean by certain event and impossible event? 1+2+2=5

4-21/392

(4)

8. (a) Let A and B be two events defined on the sample sapce S. Prove that

 $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$ 5

- (b) Define conditional probability.
- (c) The chance that doctor A will diagnose a disease X correctly is 60%. The chance that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor A, who had disease X, died. What is the chance that his disease was diagnosed correctly?

UNIT-V

9. (a) Define a random variable and its expectation. A random variable X has the following probability distribution :

Find p(4) and consequently E(X). 2+2+2=6

(b) Define distribution function. The distribution function of a continuous random variable is defined by

$$F(a) = 0.5$$
, $F(b) = 0.7$, $F(c) = 0.5$
Evaluate the following : $1+1=2$

- (i) $P(a \le X \le b)$
- (ii) $P(b \le X \le c)$
- 4-21**/392**

2

4

(5)

- (c) Write down the properties of the distribution function. 3
- **10.** (a) Define moment generating function. Let X be a random variable with p.d.f.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & ; \quad 0 < x < \infty, \quad \lambda > 0 \\ 0 & ; \quad \text{otherwise} \end{cases}$$

Find the m.g.f., mean and variance of X. 1+4=5

- (b) Define the following terms : 2+2+2=6
 - (i) Joint probability mass function
 - (ii) Marginal probability mass function
 - *(iii)* Conditional probability mass function

 $\star\star\star$