Odd Semester, 2020

(Held in March, 2021)

MATHEMATICS

(Honours)
(GHS-52)

(Differential Equations and Advanced Dynamics)

Marks : 75
Time : 3 hours

The figures in the margin indicate full marks for the questions

Write Units I and II together in one answer script and Units III, IV and V together in another answer script

Answer five questions, choosing one from each Unit
UniT-I

1. (a) Solve :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x \tag{5}
\end{equation*}
$$

(b) Solve :

$$
x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-4 x^{3} y=8 x^{3} \sin x^{2}
$$

(c) Verify that the equation
$x\left(y^{2}-a^{2}\right) d x+y\left(x^{2}-z^{2}\right) d y-z\left(y^{2}-a^{2}\right) d z=0$
is integrable and solve it.
2. (a) Solve by the method of variation of parameters

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x \tag{6}
\end{equation*}
$$

(b) Solve the simultaneous differential equations

$$
\begin{align*}
& \frac{d x}{d t}=3 x+2 y \\
& \frac{d y}{d t}+5 x+3 y=0 \tag{6}
\end{align*}
$$

(c) Solve :
$(y+a)^{2} d x+z d y-(y+a) d z=0$

$$
\begin{gathered}
\text { UNIT-II } \\
\left(\text { In this unit, } p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}\right)
\end{gathered}
$$

3. (a) Form a partial differential equation by eliminating the arbitrary function f from

$$
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)
$$

(b) Solve :

$$
x^{2}\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)
$$

(c) Find the complete integral of

$$
\begin{equation*}
p^{3}+q^{3}=27 z \tag{4}
\end{equation*}
$$

4. (a) Apply Charpit's method to find the complete integral of

$$
\begin{equation*}
2 z x-p x^{2}-2 q x y+p q=0 \tag{5}
\end{equation*}
$$

(b) Find the complete integral and singular integral of

$$
\begin{equation*}
p x+q y=p q \tag{6}
\end{equation*}
$$

(c) Solve :

$$
\begin{equation*}
q=x y p^{2} \tag{4}
\end{equation*}
$$

when the particle is at one end of a minor axis, its velocity is doubled. Prove that the new path is a hyperbola of eccentricity $\sqrt{9-8 e^{2}}$. $3+5=$
(b) The base of a rough cycloid is horizontal and its vertex downwards. A bead slides along it starting from rest at the cusp and coming to rest at the vertex. Show that $\mu^{2} e^{\mu \pi}=1$, where μ is the coefficient of friction.
UnIT-IV
7. (a) The centre of mass of a plane lamina of mass M is G and $G X, G Y$ are principal axes of inertia at G. $O X$ and $O Y$ are axes in the plane of the lamina parallel to $G X$ and $G Y$ respectively. Prove that the product of inertia of the lamina with respect to $O X$ and $O Y$ is $M \alpha \beta$ where α, β are the coordinates of G with respect to $O X$ and $O Y$. If the principal moments of inertia of the lamina are $M n \alpha^{2}$ about $G X$ and $M n \beta^{2}$ about $G Y$, and one of the principal axes of inertia at O is inclined at an angle of 45° to $O X$, prove that

$$
\frac{n-1}{m-1}=\frac{\beta^{2}}{\alpha^{2}}
$$

the angle of friction for the surfaces in contact also being α. Show that, if the initial slip velocity is down the plane, the hoop remains stationary for a time $a \omega /(g \sin \alpha)$ and then the hoop rolls down the plane with acceleration

$$
\frac{1}{2} g \sin \alpha
$$

(b) A uniform rod $A B$ of mass M and length $2 a$ lies at rest on a smooth horizontal table. An impulse J is applied at A in the plane of the table and perpendicular to the rod. Determine the velocity of the centroid and the angular velocity of the rod.

Prove also that when the insect reaches B, the frame will have rotated through an angle

$$
\frac{1}{n} \tan ^{-1}\left(\frac{2 n}{n^{2}-1}\right)
$$

$7+2=9$
(b) A uniform rod is placed on a horizontal table with $\frac{2}{3}$ rd of its length hanging over the edge. If the rod is at right angles to the edge when it is released, show that it will begin to slip when the rod has turned through an angle of $\tan ^{-1}(\mu / 2)$ where μ is the coefficient of friction between the rod and the table.
10. (a) A frame made of thin wire of line density ρ has the shape of a circle of radius a together with a diameter $A B$ of the circle. The frame lies on a smooth horizontal table and is free to rotate about a fixed vertical axis through a point O on the circumference of the circle and on the diameter normal to $A B$. An insect of mass $\frac{1}{3} a \rho$ initially at rest at A begins to crawl along the diameter $A B$. If ϕ is the angle turned backwards by the frame in space after the insect has crawled a distance x along $A B$, show that

$$
\left\{n^{2} a^{2}+(a-x)^{2}\right\} \dot{\phi}=a \dot{x}
$$

where $n^{2}=12 \pi+9$.

