5/H-28 (vi) (Syllabus-2015)

Odd Semester, 2020

(Held in March, 2021)

STATISTICS

(Honours)

[STEH-52 (TH)]

(Linear Models, Regression and Operations Research, Design of Experiments)

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- **1.** (a) Explain the following terms :
 - (i) Contrasts
 - (ii) Estimation and error spaces
 - (iii) Best linear unbiased estimator
 - (b) State and prove a necessary and sufficient condition of estimability of a linear parametric function.

4-21/475

(Turn Over)

6

(2)

- 2. (a) Consider the Gauss-Markov linear model $y = A\beta + \varepsilon$, with all the regular assumptions. If $\lambda'\beta$ is estimable, then prove that its best estimate is $\lambda'\hat{\beta}$ where $\hat{\beta}$ is any solution of the equations $A'A\beta = A'y$.
 - (b) If the coefficient matrix A has full column rank, then obtain the variance-covariance matrix of $\hat{\beta}$.

Unit—II

- **3.** In simple linear regression, derive the maximum likelihood estimators of the parameters under the assumption of normally distributed errors. 11
- **4.** (a) Describe a test procedure for testing significance of regression, in a multiple linear regression, of the response y on the regressor variables $x_1, x_2, \dots x_k$. 7
 - (b) Write a note on normal probability plot of residuals.4

Unit—III

5. Write out the complete analysis of two-way classified data with an observation per cell under a random effect model stating clearly the assumptions used, hypothesis to be tested, test statistic to be used along with ANOVA table.

```
4-21/475
```

(Continued)

8

(3)

- **6.** (a) What is confounding in factorial experiment? Distinguish between complete and partial confounding. 2+3=5
 - (b) Consider the setup of 2^3 -factorial experiment. Suppose the block size is 2^2 and 2 replications are made such that *AB* is confounded in replicate 1 and *ABC* is confounded in replicate 2. Write down the design. 6

Unit—IV

7. (a) Formulate the following linear programming problem :

A used car dealer wishes to stock up his lot to maximize his profit. He can select cars *A*, *B* and *C* which are valued at ₹ 5,000, ₹ 7,000 and ₹ 8,000 respectively. These can be sold at ₹ 6,000, ₹ 8,500 and ₹ 10,500 respectively. For each type, the probabilities of sale are :

Type of car	Prob. of sale in 90 days
Α	0.7
В	0.8
С	0.6

For every two cars of *B*, he should buy one car of type *A* or *C*. If he has ₹ 1,00,000 to invest, what should he buy to maximize his expected gain?

8

(4)

- (b) Define the following terms : 3(i) Basic solution
 - (ii) Feasible solution
- 8. (a) Define slack and surplus variables in LPP with examples.4
 - (b) Discuss briefly with examples the optimization problems occurring in various fields that can be formulated as LPP.

Unit—V

- **9.** (a) What is a transportation problem? State briefly with an example, how it can be formulated as an LPP. 5
 - (b) Describe a method to obtain initial basic feasible solution for a transportation problem.
- **10.** (a) What is an assignment problem? Give its mathematical formulation. 5
 - (b) Write down the steps of Hungarian assignment algorithm. 6

* * *