4/EH-23 (iv) (Syllabus-2015)

2021

(July)

CHEMISTRY

(Elective/Honours)

(General Chemistry—IV)

(Inorganic, Organic and Physical)

(Chem-EH-401)

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—I

(Inorganic)

(Marks: 18)

Answer one question from each Unit

UNIT—I

- **1.** (a) (i) Mention one method of preparation and application of organometallic compound of lithium. 1+1=2
 - (ii) NaC_5H_5 is more stable than NaC_5H_{11} . Explain.

(2)

- (b) What are inorganic polymers? How are they classified? Discuss the general properties of inorganic polymers.
- (c) Write few similarities in chemical properties between CN and Cl. Draw the structures of BrF₅ and IF₇. Mention their hybridization.
- **2.** (a) What are organometallic compounds? Discuss their classification with examples on the basis of haplacity of ligands.
 - (b) Discuss the preparation, properties and uses of phosphonitrilic chlorides.
 - (c) What are pseudohalogens? Name two important pseudohalogens. How are they prepared?

UNIT—II

- **3.** (a) How is photochemical smog formed in the atmosphere? What are its consequences?
 - (b) Discuss the primary and secondary treatment of polluted water.
 - (c) Discuss solid-waste disposal method by anaerobic digestion of biological waste.

20D**/1211**

(Turn Over)

1

20D**/1211**

(Continued)

4

3

3

3

4

2

3

- **4.** (a) What is the role of O_3 in the stratosphere? Which pollutants are responsible for O_3 depletion? Write the chemical reactions and explain.
 - (b) Discuss the tertiary treatment of polluted water by reverse osmosis.
 - (c) What is radioactive waste? Explain the methods for the disposal of radioactive waste.

SECTION—II

(Organic)

(*Marks* : 19)

- **1.** (a) What are glucosides? Draw the structure of methyl- -D-glucoside and indicate the glycosidic linkage. $\frac{1}{2}+1+\frac{1}{2}=2$
 - (b) How is aldohexose converted to aldopentose? 2
 - (c) Glycine has isoelectric point at pH 6. What are its possible structures at pH 5 and pH 8? 1+1=2
 - (d) What happens when urea reacts with (i) acetyl chloride and (ii) ethyl alcohol? Give the chemical equations. 1+1=2
 - (e) Give a method of preparation of barbituric acid. To which class of drugs does it belong? $1+\frac{1}{2}=1\frac{1}{2}$

OR

2. (a) Complete the following reactions: 1+2=3

(i)
$$NH_2$$
— C — NH_2 — $NaNO_2/HCl$?

CHO
(ii)
$$H$$
—C—OH
 HO —C—H
 HO —C—OH
 H —C—OH
 H —C—OH
 H —C—OH
 H —C—OH

(b) Account for the following observations:

1+1=2

2

2

2

- (i) Glucose does not react with NaHSO₃.
- (ii) Fructose gives two isomeric hexahydric alcohols on reduction.
- (c) How is alanine synthesized by Gabriel phthalimide reaction?
- (d) What are antibiotics? Briefly discuss their classification. 2½
- **3.** (a) "Pyrrole is not only a weak base but also a very weak acid." Explain.
 - (b) Explain why pyridine is less reactive than benzene in electrophilic substitution.

2

2

(5)

(6)

- (c) Give a method of preparation of methyl orange. Explain by giving appropriate structures how it acts as an indicator in acid-base titration. 1+2=3
- (d) Write the structural difference between soaps and detergents. Discuss the mechanism of cleansing action of soaps.

OR

- **4.** (a) How are the following conversions carried out? 1+1=2
 - (i) Furan into pyrrole
 - (ii) Succinaldehyde into furan
 - (b) How does pyridine react with $NaNH_2$ in liquid ammonia? Give the mechanism of the reaction. 1+1=2
 - (c) Define the iodine value of oils and indicate its significance. $1\frac{1}{2}$
 - (d) Complete the following reactions and give the mechanism of each reaction: 2+2=4

(i)
$$\longrightarrow$$
 + SO₃ Pyridine \longrightarrow 100 °C \longrightarrow 1

(ii)
$$\longleftrightarrow$$
 + KNO₃ $\xrightarrow{\text{H}_2\text{SO}_4}$?

SECTION-III

(Physical)

(Marks: 19)

- 1. (a) What is Ostwald's dilution law? Why does the law fail in case of strong electrolytes? $2+\frac{1}{2}=2\frac{1}{2}$
 - (b) Explain the term 'hydrolysis constant'.

 Derive the expression for the hydrolysis constant of a salt of a weak acid and a strong base in terms of dissociation constant of a weak acid and ionic product of water.

 1½+2½=4
 - (c) Explain the term 'solubility product'. The solubility of silver chloride in water at 25 °C is 0.00179 gl ¹. Calculate its solubility product at 25 °C. 1½+1½=3

OR

- **2.** (a) Describe the moving boundary method for the determination of transport numbers. 3½
 - (b) State and explain Kohlrausch's law.

 How does this law help in determining the equivalent conductance of weak electrolyte at infinite dilution? 2+2=4
 - (c) The conductivity of a 0.01 M solution of acetic acid at 298 K is 1 65 10 ⁴ ohm ¹ cm ¹. Calculate the molar conductivity of the solution.

2

 $1+1\frac{1}{2}=2\frac{1}{2}$

- **3.** (a) Derive Nernst equation for the variation of EMF of a cell with the concentration of ions. $3\frac{1}{2}$
 - (b) Describe the calomel electrode with a labelled diagram of electrode and give the relevant equations. $1\frac{1}{2}+1+1\frac{1}{2}=4$
 - (c) Calculate the standard EMF of a cell which involves the following cell reaction:

Zn 2Ag Zn² 2Ag

2

Given

 $E_{\mathrm{Zn}^{2},\,\mathrm{Zn}}^{\circ}$ 0 76 V and $E_{\mathrm{Ag},\,\mathrm{Ag}}^{\circ}$ 0 80 V

OR

- **4.** (a) Draw a labelled phase diagram of water system and describe the main features.
 - (b) State and explain Nernst distribution law. What are the limitations of distribution law? 2+1=3
 - (c) What is steam distillation? Give the experimental details of the process and formula to calculate the composition of distillate. $1\frac{1}{2}+1\frac{1}{2}+\frac{1}{2}=3\frac{1}{2}$

* * *