2021

(July)

CHEMISTRY

(Elective/Honours)

[General Chemistry-IV
 (Inorganic, Organic and Physical)]

[Chem-EH-401]

$$
\text { Marks : } 56
$$

Time : 3 hours

The figures in the margin indicate full marks
for the questions

SECTION—A

(Inorganic)

(Marks : 18)
Answer one question from each Unit
Unit—I

1. (a) What is meant by σ-bonded organometallic compounds? Give one example. Write one method of its preparation and one important chemical application.
(b) What are silicones? How are they obtained? Why are they considered valuable?
(c) What are pseudohalides? Give some examples. Write the similarities in chemical properties of Cl^{-}and CN^{-}.
2. (a) What are Grignard reagents? Give one method of its preparation. Write one chemical reaction to show its use in organic chemistry.
(b) Describe one method of preparation of tetrasulphur tetranitride. What happens when $\mathrm{S}_{4} \mathrm{~N}_{4}$ is treated with (i) BrF_{3} and (ii) SnCl_{2} in presence of ethanol?
(c) Explain why interhalogen compounds are more reactive than the halogens. Write one method of preparation of BrF_{3}. Draw its structure and mention one of its uses.
UNIT—II
3. (a) Write the IUPAC nomenclature of the following :
(i) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})\right]^{+4}$
(ii) $\left[(\mathrm{en})_{2} \mathrm{Co}<\mathrm{OH}_{\mathrm{OH}}^{\mathrm{NH}}>\mathrm{Co}(\mathrm{en})_{2}\right]^{+3}$
where en = ethylenediamine.
(b) What are the essential features of Valence Bond Theory? Explain the bonding in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ in terms of VBT. What are its limitations?

$$
2+1 \frac{1}{2}+1 \frac{1}{2}=5
$$

(c) How many geometrical isomers are possible for the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$? Draw their structures and IUPAC names of the isomers. $1+1=2$
4. (a) What is effective atomic number rule? Calculate the effective atomic number of the central metal atom in the following complexes and write their IUPAC names : $\quad 1+1 \frac{1}{2}+1 \frac{1}{2}=4$
(i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$
(ii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
(Atomic number of $\mathrm{Cu}=29$ and $\mathrm{Fe}=26$)
(b) Draw the structures of the geometrical isomers of the complex ion, di-chloro-bis-(ethylenediamine) cobalt (III) ion. Which of the two isomers shows optical isomerism?
(c) Draw the diagram indicating the splitting of the d-orbitals in tetrahedral field. Justify the splitting pattern considering the shapes of the d-orbitals.

SECTION-B

(Organic)

(Marks : 19)
5. (a) What happens when fructose is heated with excess of phenylhydrazine?
(b) Write down the Gabriel synthesis of glycine.
(c) Starting from D-glucose, how will you convert to-(i) D-arabinose and (ii) D-mannose? $11 / 2+1 \frac{1}{2}=3$
(d) Write down the zwitterionic structure of phenylalanine.
(e) What happens when urea is heated with HNO_{2} ?
(f) Describe the following with suitable examples :
$1+1=2$
(i) Antiviral drugs
(ii) Analgesic drugs

OR

6. (a) What happen when-
(i) fructose reacts with HCN;
(ii) glucose reacts with Br_{2} water? $1+1=2$
(b) What are reducing sugars? Give examples. $11 / 2$
(c) Define isoelectric point of amino acid. 1
(d) Write down the formation of biuret. 1
(e) Write the synthesis of paracetamol. Give its uses.
$11 / 2+1 / 2=2$
(f) Starting from fructose, how will you convert to glucose?
7. (a) Draw the molecular orbital structure of pyrrole or furan.
(b) Discuss the aromatic characters of (i) pyrrole, (ii) furan and (iii) thiophene. $1 \times 3=3$
(c) Compare the basicity of pyrrole with pyridine.
(d) What are nondrying oils? Give example.
(e) What is iodine value of fats and oils? 1
(f) What are chromophores and auxochromes? Give one example of each.

$$
1+1=2
$$

OR

8. (a) Write down the Friedel-Crafts reaction of pyrrole with benzoyl chloride.
(c) Calculate the equivalent conductivity at $20^{\circ} \mathrm{C}$ of $\mathrm{NH}_{4} \mathrm{OH}$ at infinite dilution. $2 \frac{1}{2}$

Given :

$$
\begin{aligned}
& \lambda_{0}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=130 \mathrm{sm}^{2} \mathrm{~mol}^{-1} \\
& \lambda_{0}(\overline{\mathrm{O}} \mathrm{H})=174 \mathrm{sm}^{2} \mathrm{~mol}^{-1} \\
& \lambda_{0}\left(\mathrm{Cl}^{-}\right)=66 \mathrm{sm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

OR

10. (a) Define hydrolysis of a salt. Why is aqueous solution of sodium acetate basic? Derive an expression for the hydrolysis constant of this solution.

$$
1+1^{1} / 2+2=41 / 2
$$

(b) Explain how equivalent conductance and specific conductance vary with dilution. $11 / 2+1 \frac{1}{2}=3$
(c) Mention the advantages of conductometric titrations. 2
11. (a) Derive Nernst equation for measuring the e.m.f. of a cell.
(b) Differentiate between electrochemical cell and electrolytic cell.
(c) Write a note on reference electrodes. $11 / 2$
(d) Explain the following with examples :

$$
11 / 2+11 / 2=3
$$

(i) Critical solution temperature
(ii) Azeotropic mixtures

OR
12. (a) Give the labelled phase diagram of the water system and discuss the importance of various points, lines and areas.
(b) Mention the different types of reversible electrodes.
(c) What is a condensed system? Write the reduced phase rule equation. $\quad 2122$

