2/H-76 (v) (a) (Syllabus-2015)

2021

(July)
COMMERCE
(Honours)

(Fundamental Mathematics)

$$
\begin{aligned}
& (\mathrm{BC}-202) \\
& \text { Marks : } 75
\end{aligned}
$$

Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
UNIT-I

1. (a) Define a matrix. Find matrices A and B when

$$
A+B=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 2 & 2 \\
1 & 1 & 2
\end{array}\right] \text { and } A-B=\left[\begin{array}{ccc}
1 & 4 & 4 \\
4 & 2 & 0 \\
-1 & -1 & 2
\end{array}\right]
$$

$$
2+3=5
$$

(b) Show that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

(c) If

$$
A=\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

prove that $A^{3}=A^{-1}$.

Or

(a) Solve the following system of equations using Cramer's rule :

$$
\begin{aligned}
2 x+3 y-z & =2 \\
x+2 y+z & =-1 \\
2 x+y-6 z & =4
\end{aligned}
$$

(b) Using elementary column operations, transform

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

to a diagonal matrix.
(c) At a store, Tony pays ₹ 34 for 2 kgs of Apples, 1 kg of Berries and 4 kgs of Cherries. Liza pays $₹ 35$ for 3 kgs of Apples, 2 kgs of Berries and 2 kgs of Cherries. Bob pays $₹ 49$ for 5 kgs of Apples, 3 kgs of Berries and 2 kgs of Cherries. What is the price per kg of Apples, Berries and Cherries separately?
Unit-II
2. (a) If $f(x)$ is a linear function from R to R such that $f(-1)=5$, and $f(1)=6$, find $f(x)$. Also find the value of $f(11) . \quad 3+1=4$
(b) Find the domain and the range of the following functions: $\quad 2+4+3=9$
(i) $\sqrt{6-x}$
(ii) $\sqrt{8+2 x-3 x^{2}}$
(iii) 2^{x}
(c) Define a logarithmic function with an example.

Or

(a) If

$$
f(x)=\log _{e}\left(x+\sqrt{1+x^{2}}\right)
$$

show that $f(x)+f(-x)=0$.
(b) Draw the graph of the following function

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+1, & \text { when } x<0 \\
1, & \text { when } x=0 \\
x+1 & \text { when } x>0
\end{array}\right.
$$

Also find $F(-2)$ and $F(7)$.
(c) A function $f(x)$ is defined as follows :

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{2}-x, & \text { when } 0<x<\frac{1}{2} \\
\frac{1}{2}, & \text { when } & x=\frac{1}{2} \\
\frac{3}{2}-x, & \text { when } \frac{1}{2}<x<1
\end{array}\right.
$$

Show that $f(x)$ is discontinuous at $x=\frac{1}{2}$.
Is $f(x)$ continuous at $x=\frac{4}{7}$? Justify your answer.

Or

(a) Find the first-order derivative of the following functions :
(i) $y=\left(x^{2}+2\right)^{5}\left(3 x^{4}-5\right)^{4}$
(ii) $y=\frac{e^{x} \log _{e} x}{x^{2}}$
(iii) $y=x^{\log _{e} x}$
(b) Using the first principle, find the first-order derivative of the following function :

$$
y=\frac{1}{\sqrt{x^{2}+2^{2}}}
$$

(c) If the rate of change of y with respect to x is 5 and x is changing at 3 units per second, how fast is y changing?

UniT—IV
4. (a) A company charges $₹ 550$ for a transistor set on orders of 50 or less sets. The charge is reduced by ₹ 5 per set for each set ordered in excess of 50 . Find the largest size order that the company should allow in order to receive a maximum revenue. Also find the maximum revenue.
(b) The manufacturing cost of an item consists of $₹ 1,200$ as overhead cost, material cost of $₹ 4$ per item and the labour cost of $₹ 3 x^{2} / 256$ for x items produced. How many items should be produced in order to have minimum average cost?
(c) Find the maximum and the minimum values of $f(x)=2 x^{2}-x^{3}$.

Or

(a) The side of an equilateral triangle is 5 cm and is increasing at the rate of $\sqrt{3} \mathrm{~cm} / \mathrm{s}$. How fast is its area increasing?
(b) If the demand function is $p=4-5 x^{2}$, for what value of x, the elasticity of demand will be unitary? Here, p is price per unit of output and x is the output.
(c) Find the elasticities of demand and supply at equilibrium price for demand function $p=\sqrt{100-x^{2}}$ and supply function $x=2 p-10$.

Unit-V

5. (a) Mr. X plans to invest $₹ 5,000$ for 3 years. He may choose to invest the amount at 9% per annum compound interest accruing at the end of each quarter of the year or he may choose to invest it at $9 \cdot 5 \%$ per annum compound interest accruing at the end of each year. Which investment will he choose for better returns?
(b) A bond is available for ₹ 1,500 it offers, including one immediate payment and 10 annual payments of $₹ 200$. Find the rate of return on the bond.
(c) What annual instalment should be paid to clear the debt of $₹ 645$ in 4 years at the rate of 5% per annum simple interest?

Or

(a) By investing ₹ 8,000 in the shares of a company, Peter gets an income of ₹ 200 when the dividend is 10%. If the initial value of each share is $₹ 80$, find the market value of each share.
(b) A machine costs ₹ $5,00,000$ with a working life of 5 years and a scrap value of $₹ 1,00,000$ at the end. Calculate its rate of depreciation.
(c) A bond presently sells at ₹ 112 which carries a coupon rate of 8% per annum. If your expected rate of return is 10%, would you like to purchase the bond?

