2021		(c)	If
(July)			3 3 4
COMMERCE			$\begin{array}{cccc} A & 2 & 3 & 4 \\ 0 & 1 & 1 \end{array}$
(Honours)			prove that $A^3 A^1$.
(Fundamental Mathematics)			Or
(BC-202)		(a)	Solve the following system of equations using Cramer's rule :
Marks : 75			2x $3y$ z 2
Time : 3 hours			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The figures in the margin indicate for the questions Answer five questions, taking one f	rom each Unit	<i>(b)</i>	Using elementary column operations, transform
UNIT—I 1. <i>(a)</i> Define a matrix. Find matrie	ces A and B		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
when			to a diagonal matrix.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(c)	At a store, Tony pays ₹ 34 for 2 kgs of Apples, 1 kg of Berries and 4 kgs of Cherries. Liza pays ₹ 35 for 3 kgs of Apples, 2 kgs of Berries and 2 kgs of Cherries. Bob pays ₹ 49 for 5 kgs of Apples, 3 kgs of Berries and 2 kgs of Cherries. What is the price per kg of Apples, Berries and Cherries separately?
20D /1138	(Turn Over)	20D /113	8 (Continu

2/H-76 (v) (a) (Syllabus-2015)

3 4 3 4 1 1 1 . g system of equations ıle : 3y z 2 2y z = 16*z* 4 column operations,

(2)

5

5

5

5

(Continued)

(3)

Unit—II

- **2.** (a) If f(x) is a linear function from R to R such that f(1) 5, and f(1) 6, find f(x). Also find the value of f(11). 3+1=4
 - (b) Find the domain and the range of the following functions : 2+4+3=9(i) $\sqrt{6 x}$ (ii) $\sqrt{8 \ 2x \ 3x^2}$ (iii) 2^x
 - (c) Define a logarithmic function with an example. 2

Or

(a) If

$$f(x) \quad \log_e(x \quad \sqrt{1} \quad x^2)$$

show that f(x) = f(-x) = 0.

(b) Draw the graph of the following function :

Also find F(2) and F(7).

(4)

(c) The cost of hiring a catering service to serve food for a party is ₹ 150 per head for 20 persons or less, ₹ 130 per head for 21 to 50 persons and ₹ 110 per head for 51 to 100 persons. For 100 or more persons, the cost is ₹ 100 per head. If x is the number of persons, find the total cost function C(x) of the catering service. If exactly 200 people attend the party, how much will the catering service earn?

UNIT—III

3. (a) Evaluate the following limits : 3+3=6

(i)
$$\lim_{x \to 1} \frac{x^2 \quad 3x \quad 2}{x^2 \quad 4x \quad 3}$$

(ii) $\lim_{x \to 0} \frac{\sqrt{1 \quad 2x} \quad \sqrt{1 \quad 3x}}{x}$

(b) Explain why the following limit does not exist : 3

$$\lim_{x \to 0} \frac{x}{|x|}$$

(Continued)

5

20D/1138

(Turn Over)

4

6

20D/1138

(5)

A function f(x) is defined as follows : (c)

$f(x) = \frac{1}{2} x , \text{ when } 0 x \frac{1}{2}$ $f(x) = \frac{1}{2} , \text{ when } x \frac{1}{2}$ $\frac{3}{2} x , \text{ when } \frac{1}{2} x 1$

Show that f(x) is discontinuous at $x = \frac{1}{2}$. Is f(x) continuous at $x = \frac{4}{7}$? Justify your answer.

Or

Find the first-order derivative of the (a)following functions : 3+3+3=9(i) $y (x^2 \ 2)^5 (3x^4 \ 5)^4$ (ii) $y = \frac{e^x \log_e^x}{x^2}$

(iii)
$$y x^{\log^2}$$

(b)Using the first principle, find the first-order derivative of the following function :

$$y \quad \frac{1}{\sqrt{x^2 \quad 2^2}}$$

If the rate of change of *y* with respect to (c)x is 5 and x is changing at 3 units per 3 second, how fast is y changing?

20D/1138

(Turn Over)

6

3

(6)

UNIT-IV

- **4.** (a) A company charges ₹550 for a transistor set on orders of 50 or less sets. The charge is reduced by ₹5 per set for each set ordered in excess of 50. Find the largest size order that the company should allow in order to receive a maximum revenue. Also find the maximum revenue.
 - The manufacturing cost of an item (b)consists of ₹1,200 as overhead cost, material cost of ₹4 per item and the labour cost of $\overline{<}3x^2/256$ for x items produced. How many items should be produced in order to have minimum average cost?
 - Find the maximum and the minimum (c)values of $f(x) = 2x^2 + x^3$. 4

4

5

6

Or

- The side of an equilateral triangle is (a)5 cm and is increasing at the rate of $\sqrt{3}$ cm/s. How fast is its area increasing?
- If the demand function is $p = 4 = 5x^2$, (b)for what value of x, the elasticity of demand will be unitary? Here, *p* is price per unit of output and *x* is the output. 3

20D/1138

(Continued)

(7)

(c) Find the elasticities of demand and supply at equilibrium price for demand function $p \sqrt{100 x^2}$ and supply function $x \ 2p \ 10$.

UNIT-V

- 5. (a) Mr. X plans to invest ₹5,000 for 3 years. He may choose to invest the amount at 9% per annum compound interest accruing at the end of each quarter of the year or he may choose to invest it at 9.5% per annum compound interest accruing at the end of each year. Which investment will he choose for better returns?
 - (b) A bond is available for ₹1,500 it offers, including one immediate payment and 10 annual payments of ₹200. Find the rate of return on the bond.
 - (c) What annual instalment should be paid to clear the debt of ₹645 in 4 years at the rate of 5% per annum simple interest?

(8)

Or

(a) By investing ₹8,000 in the shares of a company, Peter gets an income of ₹200 when the dividend is 10%. If the initial value of each share is ₹80, find the market value of each share.

5

5

5

- (b) A machine costs ₹5,00,000 with a working life of 5 years and a scrap value of ₹1,00,000 at the end. Calculate its rate of depreciation.
- (c) A bond presently sells at ₹112 which carries a coupon rate of 8% per annum. If your expected rate of return is 10%, would you like to purchase the bond?

$\star\star\star$

8

5

5

5