2021

(July)

COMPUTER SCIENCE
(Elective/Honours)
(Digital Logic Design and Computer Architecture)
(CS-201T)
Marks : 75
Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit
UNIT-I

1. (a) Subtract the following decimal numbers by using either 9's complement or 10's complement :

$$
3570-2100
$$

(b) Subtract the following decimal numbers by using either 9's complement or 10's complement :
(c) Subtract the following binary numbers by using either 1 's complement or 2's complement :

$$
1100-1000
$$

(d) Subtract the following binary numbers by using either 1 's complement or 2's complement :

$$
1000-1100
$$

(e) Convert the following binary number to base 10 (decimal) :

$$
(1011)_{2}
$$

(f) Convert the following decimal number to base 8 (octal) :

$(15)_{10}$

(g) Convert the following binary number to base 10 (decimal) :

$$
(10.1)_{2}
$$

(h) Convert the following hexadecimal number to base 2 (binary) :

$$
(12 \mathrm{AB})_{16}
$$

(i) Obtain the 9's complement of the following decimal number : 1
$(1234)_{10}$
(j) Convert the following hexadecimal number to base 10 (decimal) :

$$
(2 \mathrm{~B})_{16}
$$

(k) Obtain the 2's complement of the following binary number :

$$
(1000000)_{2}
$$

2. (a) Subtract the following decimal numbers by using either 9's complement or 10's complement :

$$
5800-15
$$

(b) Subtract the following decimal numbers by using either 9's complement or 10's complement :

$$
15-5800
$$

(c) Why are NAND and NOR gates considered universal gates? 2
(d) Explain the following in brief : $1 \times 4=4$
(i) 1's complement
(ii) 2's complement
(iii) 9's complement
(iv) 10's complement
(e) Use either 1's complement or 2's complement to perform the subtraction of the following binary numbers:

$$
111-101
$$

(f) Use either 1's complement or 2's complement to perform the subtraction of the following binary numbers:

$$
101-111
$$

(g) Explain the following in brief : $1 \times 2=2$
(i) Binary number system
(ii) Octal number system
(h) Find the 9's complement of the following decimal number :
$(9900)_{10}$
(i) Find the 2's complement of the following binary number :
UNIT—II
3. (a) Simplify the following Boolean expression, given by the function $F(A, B, C, D)$:
$F(A, B, C, D)=\Sigma(1,2,3,5,6,7,13,14,15)$
Use a four-variable Karnaugh map. Write the simplified answer in the sum-of-products (SOP) form.
(b) Express the following Boolean expression as a sum of minterms :

$$
F(A, B, C)=1
$$

(c) Use Don't care conditions to simplify the following :

$$
F(X, Y, Z)=\Sigma(1,3,4,5,7)
$$

Don't care condition $d(X, Y, Z)=\Sigma(0,6)$
Make use of a three-variable Karnaugh map. Write the simplified answer in the sum-of-products (SOP) form.
(d) Draw a logic diagram using only NAND gates to represent the following Boolean expression :

$$
A \cdot B+C \cdot D
$$

(e) What is De Morgan's theorem?
4. (a) Define canonical form.
(b) Define Don't care condition. 1
(c) Use AND gates and OR gates to draw a logic diagram for the following Boolean expression :

$$
(W+X) \cdot(Y+Z)
$$

(d) Convert the following Boolean expression into its canonical form :
(e) Explain, in brief, the following terms. Also use an example for each : $(1+1) \times 4=8$
(i) Minterm
(ii) Maxterm
(iii) Sum-of-products (SOP)
(iv) Product-of-sums (POS)
Unit-III
5. (a) Show the step-by-step multiplication process using Booth's algorithm for multiplying the following numbers, where both of the given numbers are positive :

$$
(+15) \times(+13)
$$

Assume that all of the registers used are of size 5 bits each.
(b) Make the truth table of a full-adder, with X, Y and Z as the three inputs. Use C as the output for the Carry. Also use S as the output for the Sum.
(c) How is Logical Shift Right different from Logical Shift Left?
6. (a) Draw the flowchart of Booth's algorithm for multiplying two binary integers in 2's complement representation.
(b) Explain the hardware used for Booth's algorithm with a diagram.
(c) What is a half-adder? Explain with the help of a diagram.
UnIT—IV
7. (a) With the help of a block diagram, explain the working of a $J-K$ flip-flop. How is a race condition overcome? $6+2=8$
(b) What is a register? 1
(c) What is a counter? 1
(d) Explain the following two terms, with respect to a flip-flop :

$$
1 \times 2=2
$$

(i) Present state
(ii) Next state
(e) What is an indeterminate state of an R-S flip-flop?
(f) Explain, in brief, the following addressing modes with examples : $1 \times 2=2$
(i) Direct addressing mode
(ii) Indirect addressing mode
8. Design a 3-bit counter. It goes through the following eight states, expressed as 3-bit numbers, namely, 000, 001, 010, 011, 100, 101,110 and 111 in binary, (i.e., 0, 1, 2, 3, 4, 5, 6 and 7 in decimal). Make use of any type of flip flops for the design of the counter. Answer the following :
(a) Draw the state diagram for the above counter.
(b) Derive the excitation table for the above counter. $3+12=15$
Unit-V
9. (a) What do you mean by hit ratio in a cache memory?
(b) Draw a diagram that shows how four 128×8 RAMs can be connected to the CPU.
(c) Explain the following with reference to the cache memory :
$3+4=7$
(i) Direct mapping
(ii) Set-associative mapping
(d) Explain the concept of locality of reference with respect to cache memory.

2

(9)

10. (a) Explain DMA transfer with the help of a diagram.
(b) Differentiate between cycle stealing and burst transfer.
(c) Explain the following modes of data transfer : 3+3=6 (i) Programmed I/O mode of a data transfer
(ii) Interrupt-initiated mode of a data transfer
