/EH-73 (ii) (Syllabus-201	15)		(2)	
2021 (July)		(c)	Subtract the following binary numbers by using either 1's complement or 2's complement : 1100 1000	1
PUTER SCIENCE		(d)	Subtract the following binary numbers	
ective/Honours)		(4)	by using either 1's complement or 2's complement :	2
gn and Computer Architecture	e)		1000 1100	
(CS-201T)		(e)	Convert the following binary number to base 10 (decimal) :	1
Marks: 75			(1011) ₂	T
Time : 3 hours				
he margin indicate full marks or the questions		(f)	Convert the following decimal number to base 8 (octal) : $(15)_{10}$	1
question from each Unit		(g)	Convert the following binary number	
Unit—I			to base 10 (decimal) : (10.1) ₂	1
he following decimal numbers either 9's complement or lement : 3570 2100	1	(h)	Convert the following hexadecimal number to base 2 (binary) : (12AB) ₁₆	1
he following decimal numbers either 9's complement or lement : 2100 3570	2	(i)	Obtain the 9's complement of the following decimal number : $(1234)_{10}$	1
(Turn Ove	er)	20D /113	4 (Continue	ed)

2/ (::) (0--11-1

COME

(Eleo

(Digital Logic Desig

Т

The figures in th fo

Answer **one**

- **1.** (a) Subtract the by using 10's comp
 - (b) Subtract th by using 10's comp

20D**/1134**

(3)

(j)	Convert the following hexadecimal number to base 10 (decimal) : 2 $(2B)_{16}$
(k)	Obtain the 2's complement of the following binary number : 2 (1000 000) ₂
(a)	Subtract the following decimal numbers by using either 9's complement or 10's complement : 1 5800 15
(b)	Subtract the following decimal numbers by using either 9's complement or 10's complement : 2 15 5800
$\langle \rangle$	10 0000
(c)	Why are NAND and NOR gatesconsidered universal gates?2
(d)	Explain the following in brief : 1×4=4 (i) 1's complement (ii) 2's complement (iii) 9's complement (iv) 10's complement
(e)	Use either 1's complement or 2's complement to perform the subtraction of the following binary numbers : 1 111 101

(4)

(f) Use either 1's complement or
 2's complement to perform the subtraction of the following binary numbers :

101 111

- (g) Explain the following in brief : 1×2=2
 (i) Binary number system
 (ii) Octal number system
- (h) Find the 9's complement of the following decimal number : 1

(9900)10

(i) Find the 2's complement of the following binary number : 1

 $(1010101)_2$

Unit—II

3. (a) Simplify the following Boolean expression, given by the function *F* (*A*, *B*, *C*, *D*) : *F* (*A*, *B*, *C*, *D*) (1, 2, 3, 5, 6, 7, 13, 14, 15)

Use a four-variable Karnaugh map. Write the simplified answer in the sumof-products (SOP) form.

2.

20D**/1134**

5

(5)

	(b)	Express the following Boolean expression as a sum of minterms :	2
		F(A, B, C) = 1	
	(c)	Use Don't care conditions to simplify the following :	
		F(X, Y, Z) (1, 3, 4, 5, 7)	
		Don't care condition $d(X, Y, Z)$ (0, 6)	
		Make use of a three-variable Karnaugh map. Write the simplified answer in the sum-of-products (SOP) form.	5
	(d)	Draw a logic diagram using only NAND gates to represent the following Boolean expression :	2
		A.B C.D	
	(e)	What is De Morgan's theorem?	1
4.	(a)	Define canonical form.	1
	(b)	Define Don't care condition.	1
	(C)	Use AND gates and OR gates to draw a logic diagram for the following Boolean expression :	2
		(W X) (Y Z)	
	(d)	Convert the following Boolean expression into its canonical form : F (A, B, C, D) AB D BCD	3

(6)

- (e) Explain, in brief, the following terms. Also use an example for each : $(1+1)\times 4=8$
 - (i) Minterm
 - (ii) Maxterm
 - (iii) Sum-of-products (SOP)
 - (iv) Product-of-sums (POS)

Unit—III

5. (a) Show the step-by-step multiplication process using Booth's algorithm for multiplying the following numbers, where both of the given numbers are positive :

(15) (13)

Assume that all of the registers used are of size 5 bits each.

10

- (b) Make the truth table of a full-adder, with X, Y and Z as the three inputs.
 Use C as the output for the Carry. Also use S as the output for the Sum.
- (c) How is Logical Shift Right different from Logical Shift Left? 2
- 6. (a) Draw the flowchart of Booth's algorithm for multiplying two binary integers in 2's complement representation.

20D/1134

20D**/1134**

(Continued)

(7)

(b)	Explain the hardware used for Booth's	
	algorithm with a diagram.	

(c) What is a half-adder? Explain with the help of a diagram.

Unit—IV

7.	(a)	With the help of a block diagram, explain the working of a J - K flip-flop. How is a race condition overcome? 6+2=8
	(b)	What is a register? 1
	(c)	What is a counter? 1
	(d)	Explain the following two terms, with respect to a flip-flop : $1 \times 2=2$
		(i) Present state
		(ü) Next state
	(e)	What is an indeterminate state of an <i>R-S</i> flip-flop?1
	(f)	Explain, in brief, the following addressing modes with examples : $1 \times 2=2$
		(i) Direct addressing mode
		(ii) Indirect addressing mode

(8)

- **8.** Design a 3-bit counter. It goes through the following eight states, expressed as 3-bit numbers, namely, 000, 001, 010, 011, 100, 101, 110 and 111 in binary, (i.e., 0, 1, 2, 3, 4, 5, 6 and 7 in decimal). Make use of any type of flip flops for the design of the counter. Answer the following :
 - (a) Draw the state diagram for the above counter.
 - (b) Derive the excitation table for the above counter. 3+12=15

Unit—V

9.	(a)	What do you mean by hit ratio in a cache memory?2
	(b)	Draw a diagram that shows how four 128 8 RAMs can be connected to the CPU. 4
	(c)	Explain the following with reference to the cache memory :3+4=7(i) Direct mapping(ii) Set-associative mapping
	(d)	Explain the concept of locality of reference with respect to cache memory. 2

20D**/1134**

(Turn Over)

7

20D/1134

(Continued)

(9)

- 10. (a) Explain DMA transfer with the help of a diagram.
 (b) Differentiate between cycle stealing and burst transfer.
 (c) Explain the following modes of data transfer : 3+3=6
 (i) Programmed I/O mode of a data transfer
 (ii) Intermunt initiated mode of a data
 - *(ii)* Interrupt-initiated mode of a data transfer

 $\star\star\star$