2/EH-28 (ii) (Syllabus-2015)

2021

(July)

STATISTICS

(Elective/Honours)

(Probability Distributions and Statistical Inference)

[STEH-2(TH)]

Marks: 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- 1. Derive Poisson distribution as a limiting form of bionomial distribution. Hence, find β_1 and β_2 of the distribution. (Notations have their usual meanings). 12
- **2.** (a) Define a geometric distribution. 2
 - (b) Let X be a discrete random variable having geometric distribution with parameter p. Obtain its mean and variance.

20D/1580

(Turn Over)

4

(2)

(c) State and prove the reproductive property of the Poisson distribution.Show that the mean and variance of this distribution are equal.

Unit—II

- (a) Obtain the mode, median and moment generating function of normal distribution.
 - (b) Write briefly the importance of normal distribution.
- **4.** (a) Let X and Y be independent standard normal variates. Obtain the m.g.f. of XY. 5
 - (b) Write short notes on the following : 6
 - (i) Q-Q plot
 - (ii) P-P plot

UNIT—III

- (a) What do you mean by sampling distribution and distribution of functions of random variables?
 3
 - (b) What is chi-square variate? Show that the sum of independent chi-square variates is also chi-square variate.
 - (c) Write a brief note on 'goodness of fit' and 'chi-square probability curve'.

20D/1580

(Continued)

6

(3)

- **6.** (a) State and prove Chebyshev's inequality. 2+4
 - (b) Define the following :
 - (i) F-distribution
 - (ii) Student's t statistic

UNIT—IV

- **7.** Define the following : 5+3+3=11
 - (a) Likelihood function and method of maximum likelihood and its properties
 - (b) Method of moments
 - (c) Minimum variance unbiased estimation and its properties
- 8. (a) Define minimum variance unbiased estimator. If T_1 is an MVUE of $\gamma(\theta)$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency e < 1, then prove that no unbiased linear combination of T_1 and T_2 can be an MVUE of $\gamma(\theta)$. 2+5
 - (b) What do you mean by confidence interval and confidence limits? 4

(4)

UNIT—V

- 9. (a) What is 'hypothesis testing'? What do you mean by one-tailed and two-tailed tests?3
 - (b) Write a note on *p*-values. 4
 - (c) Write briefly the procedure for testing of hypothesis.4
- **10.** (a) Explain clearly the assumptions involved in the 't-test' for testing the significance of the difference between the two sample means.
 - (b) Write a note on 't-test' for testing the significance of an observed correlation and regression coefficient.

5

20D—PDF/1580

5

6