(July)

CHEMISTRY

(Honours)

(Part-A : Inorganic Chemistry)

(Chem-H-601)

Marks : 38

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer any one question from each Section

SECTION-I

- (a) What is meant by the -acidity of a ligand? Compare the bonding characteristics of metal carbonyls and metal nitrosyls.
 - (b) Give the mechanism of homogeneous hydrogenation of alkenes with Wilkinson's catalyst.
 - (c) Give the structure of Zeise salt.
 - (d) Give one method of preparation and one use of alkyl-lithium compounds.2

20D/1295

(Turn Over)

3

1

(2)

- **2.** (a) Write one method of preparation of $(C_2H_5)_2SnX_2$ and draw its structure. Give two applications of organotin compounds. 3+2=5
 - (b) Write down the steps involved in the synthesis of acetic acid using rhodium carbonyl iodide catalyst. $2\frac{1}{2}$
 - (c) Explain the bonding involved in metal-ethylene complexes. $2\frac{1}{2}$

SECTION-II

- **3.** (a) What are the criteria for an element to be considered as essential element? 2
 - (b) List the diseases associated with deficiency and excess of Fe, Ca and I. 3
 - (c) Discuss the structure of chlorophyll and explain the light and dark reactions in photosynthesis.
- 4. (a) In vitamin- B_{12} , what is the oxidation state of Co? Which ligands occupy the 5th and 6th coordination positions of Co in vitamin- B_{12} ? Discuss the methylation reaction involving vitamin- B_{12} . 5
- 20D**/1295**

(Continued)

(3)

- (b) Give a probable mechanism for the reversible hydration of CO_2 by carbonic anhydrase.
- (c) What are the toxic effects associated with the following metal ions? 2

Hg, Pb, Be and Al

SECTION-III

- (a) Discuss the Orgel combined energy level diagram for d¹ and d⁹ systems for octahedral and tetrahedral complexes. 3
 - (b) The IR spectra for trans-[Pd(NH₃)₂ Cl₂] and cis-[Pd(NH₃)₂ Cl₂] show the following (Pd-N) and (Pd-Cl) vibrational frequencies in cm⁻¹:

 $\begin{array}{c} (Pd-N) & (Pd-Cl)\\ trans-[Pd(NH_3)_2Cl_2] & 496 & 333\\ cis-[Pd(NH_3)_2Cl_2] & 495, 476 & 327, 306\\ Comment on the observed characteristic \end{array}$

IR bands.

6. (a) There are no allowed transitions for $[Mn(H_2O)_6]^2$ still it is pale pink in colour. Why?

20D**/1295**

(Turn Over)

3

1

3

(4)

(b) IR frequencies ($_{V-F}$) in wave numbers (cm⁻¹) are furnished below for the following complexes. Comment on the differences in the observed IR frequencies :

> VF₆ (676 cm ¹), VF₆² (584 cm ¹); VF₆³ (533 cm ¹)

(c) Determine the term symbols for (i) $s^1 p^1$ and (ii) $d^1 s^1$.

SECTION-IV

- 7. (a) Define trans-effect and name two ligands with trans-directing effect.
 - (b) What is the general relation between overall stability constant and stepwise stability constant? 3
- **8.** (a) Draw the stereochemistry of substitution of the following reactions :

1½×2=3

NITT

3

(*i*)
$$[PtCl_4]^2$$
 NO_2 A NH_3 B
(*ii*) $[PtCl_4]^2$ NH_3 C NO_2 D

NO

20D/1295

(Continued)

(5)

(b) Show that the inertness of a complex is different from its thermodynamic stability.

3

SECTION-V

- 9. (a) What do you understand by the term 'top-down' and 'bottom-up' methods in the synthesis of nanomaterials? Where are they used in nanotechnology? 3
 - (b) Give one method of preparation of gold nanoparticles and give its applications. 3
- **10.** (a) Name the different types of nanomaterial and mention their uses. 3
 - (b) Give one method of preparation of silver nanoparticles and give its applications. 3

 $\star \star \star$

20D—PDF**/1295** 6/H-23 (vii) (a) (Syllabus-2015)