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The figures in the margin indicate full marks

for the questions

Answer five questions, selecting one from each Unit

UNIT—I

1. (a) If f is bounded and integrable in [ , ]a b ,

show that | |f  is integrable in [ , ]a b . Is the 

converse true? Justify your answer. 5+1=6

(b) A function f defined on the interval [ , ]0 1

as follows :
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Show that f is integrable on [ , ]0 1 and

find the value of f x dx( )
0

1

ò .
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(c) Show that every continuous function on 

a closed and bounded interval is

Riemann integrable. 4

2. (a) Show that

x e dxn x- -¥

ò
1

0

is convergent, if and only if, n > 0. 6

(b) Examine the convergence of the

improper integral

dx

x x( )20

2

-ò
4

(c) Show that

sin x

x
dx
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ò          

is convergent. 5

UNIT—II

3. (a) Let f be continuous in [ , ] [ , ].a b c d´

Show that

f x y dx dy f x y dy dx
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(b) If | |a £ 1, show that
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(c) Show that

tan
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log( )
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+
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p

if a ³ 0. 4

4. (a) Evaluate

f e
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where a ³ 0 and deduce that
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(b) Show that uniformly convergent

improper integral of a continuous

function is itself a continuous function. 4

(c) Show that e yx dxx-¥

ò
2

0
cos  is uniformly

convergent in ] , [-¥ ¥ . 3

UNIT—III

5. (a) Evaluate 

( ) ( )2 3 42 2x y dx y x dy
C

+ + -ò
where C is the triangle ABC whose

vertices are 

A B Cº º º( , ), ( , ), ( , )0 0 2 0 2 1 5
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(b) Evaluate xy x y dx dy( )+òò  over the area

between the curves y x= 2  and y x= . 5

(c) Change the order of integration in the

double integral

I x y dx dy
x
a

a xa
=

-

òò f( , )
2

4

3

0

2

where f( , )x y  is a continuous function. 5

6. (a) State Green’s theorem in R2 . Use it to

evaluate the integral

( ) ( )x xy dx y xy dy
C

2 3 2 2- + -ò
where C is the square with vertices ( , )0 0 , 

( , )2 0 , ( , )2 2 , ( , )0 2 . 5

(b) Changing variables from Cartesian to

polar coordinates, evaluate the integral

x y dx dy

E

2 2+òò

where E is the region bounded by the

circles x y2 2 4+ =  and x y2 2 9+ = . 5

(c) Apply Gauss’ divergence theorem to

evaluate

x dydz y dzdx z xy x y dx dy

S

2 2 2+ + - -òò ( )

where S is the surface of the cube 

0 1£ £x , 0 1£ £y , 0 1£ £z . 5
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UNIT—IV

7. (a) Determine whether the following

statements are True or False with brief

justification : 6

(i) The intersection of an arbitrary

collection of closed sets is closed.

(ii) The derived set of every set is a

closed set.

(iii) The set Q of all rational numbers is

a closed set.

(b) State and prove Bolzano-Weierstass

theorem in R. 5+1=6

(c) Let A and B be subsets of R. Then show

that A B A BÈ = È . 3

8. (a) Let A be an infinite subset of a compact

set Y. Then prove that A has a limit

point in Y. 5

(b) Show that the function given by

f x y( , ) =

ì
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is continuous at ( , )0 0 . 5
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(c) Show that a continuous and strictly

monotonic increasing function f on [ , ]a b

admits an inverse which is also

continuous. 5

UNIT—V

9. (a) Let f be a real-valued continuous

function with compact domain D nÌ R .

Show that f is uniformly continuous

in D. 5

(b) Show that the function f x y xy( , ) | |=  is

not differentiable at the origin, but the

partial derivatives exist at ( , )0 0 . 5

(c) Show that the function

f x y( , ) =

ì
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does not satisfy conditions of Schwarz’s

theorem. 5

10. (a) Let f be a real-valued function defined in 

a domain D nÌ R  and let a be an

interior point of D. If f is differentiable at 

a, then show that f admits partial

derivatives at a. 5
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(b) If

u
y

x
=

2

2
, v

x y

x
=
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2

then show that 
¶

¶

( , )

( , )

u v
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2
.

5

(c) Find the directional derivatives of the

function f : R R2 ®  defined by

f x y x y( , ) = +2 2

at the point ( , )a a1 2  in the direction

( , )x y . 5
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