## 6/H-29 (vii) (Syllabus-2015)

## 2021

( July )

## MATHEMATICS

( Honours )

## ( Advanced Calculus )

( GHS-61 )
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

## Unit-I

1. (a) If $f$ is bounded and integrable in $[a, b]$, show that $|f|$ is integrable in $[a, b]$. Is the converse true? Justify your answer. 5+1=6
(b) A function $f$ defined on the interval $[0,1]$ as follows :
$f(x)=\left\{\begin{array}{l}\frac{1}{2^{n}}, \text { when } \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}} \forall n=0,1,2, \ldots \\ 0, \text { when } x=0\end{array}\right.$
Show that $f$ is integrable on $[0,1]$ and find the value of $\int_{0}^{1} f(x) d x$.
(c) Show that every continuous function on a closed and bounded interval is Riemann integrable.
2. (a) Show that

$$
\int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

is convergent, if and only if, $n>0$.
(b) Examine the convergence of the improper integral

$$
\int_{0}^{2} \frac{d x}{x(2-x)}
$$

(c) Show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

is convergent.
UNIT-II
3. (a) Let $f$ be continuous in $[a, b] \times[c, d]$. Show that

$$
\int_{c}^{d}\left\{\int_{a}^{b} f(x, y) d x\right\} d y=\int_{a}^{b}\left\{\int_{c}^{d} f(x, y) d y\right\} d x
$$

(b) If $|a| \leq 1$, show that

$$
\int_{0}^{\pi} \log (1+a \cos x) d x=\pi \log \left(\frac{1}{2}+\frac{1}{2} \sqrt{1-x^{2}}\right)
$$

(c) Show that

$$
\int_{0}^{\infty} \frac{\tan ^{-1} a x}{x\left(1+x^{2}\right)} d x=\frac{\pi}{2} \log (1+a)
$$

if $a \geq 0$.
4
4. (a) Evaluate

$$
f(\alpha, \beta)=\int_{0}^{\infty} e^{-\alpha x} \frac{\sin \beta x}{x} d x
$$

where $\alpha \geq 0$ and deduce that

$$
\int_{0}^{\infty} \frac{\sin \beta x}{x} d x=\left\{\begin{array}{c}
+\frac{\pi}{2}, \text { if } \beta>0  \tag{8}\\
0, \text { if } \beta=0 \\
-\frac{\pi}{2}, \text { if } \beta<0
\end{array}\right.
$$

(b) Show that uniformly convergent improper integral of a continuous function is itself a continuous function. 4
(c) Show that $\int_{0}^{\infty} e^{-x^{2}} \cos y x d x$ is uniformly convergent in $]-\infty, \infty[$.
Unit-III
5. (a) Evaluate

$$
\int_{C}\left(2 x^{2}+y^{2}\right) d x+(3 y-4 x) d y
$$

where $C$ is the triangle $A B C$ whose vertices are

$$
\begin{equation*}
A \equiv(0,0), \quad B \equiv(2,0), \quad C \equiv(2,1) \tag{5}
\end{equation*}
$$

(b) Evaluate $\iint x y(x+y) d x d y$ over the area between the curves $y=x^{2}$ and $y=x$.
(c) Change the order of integration in the double integral

$$
I=\int_{0}^{2 a} \int_{\frac{x^{2}}{4 a}}^{3 a-x} \phi(x, y) d x d y
$$

where $\phi(x, y)$ is a continuous function.
6. (a) State Green's theorem in $\mathbb{R}^{2}$. Use it to evaluate the integral

$$
\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y
$$

where $C$ is the square with vertices $(0,0)$, $(2,0),(2,2),(0,2)$.
(b) Changing variables from Cartesian to polar coordinates, evaluate the integral

$$
\iint_{E} \sqrt{x^{2}+y^{2}} d x d y
$$

where $E$ is the region bounded by the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
(c) Apply Gauss' divergence theorem to evaluate
$\iint_{S} x^{2} d y d z+y^{2} d z d x+2 z(x y-x-y) d x d y$ where $S$ is the surface of the cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
UniT—IV
7. (a) Determine whether the following statements are True or False with brief justification :
(i) The intersection of an arbitrary collection of closed sets is closed.
(ii) The derived set of every set is a closed set.
(iii) The set $\mathbb{Q}$ of all rational numbers is a closed set.
(b) State and prove Bolzano-Weierstass theorem in $\mathbb{R}$.
$5+1=6$
(c) Let $A$ and $B$ be subsets of $\mathbb{R}$. Then show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
8. (a) Let $A$ be an infinite subset of a compact set $Y$. Then prove that $A$ has a limit point in $Y$.
(b) Show that the function given by

$$
f(x, y)=\left\{\begin{array}{cc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\
0, & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

is continuous at $(0,0)$.

## (7)

(b) If

$$
u=\frac{y^{2}}{2 x}, v=\frac{x^{2}+y^{2}}{2 x}
$$

then show that $\frac{\partial(u, v)}{\partial(x, y)}=-\frac{y}{2 x}$.
(c) Find the directional derivatives of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

at the point $\left(a_{1}, a_{2}\right)$ in the direction $(x, y)$.

