2021

(July)

MATHEMATICS

(Elective/Honours)

(Geometry and Vector Calculus)

(GHS-21)
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit
UNIT—I

1. (a) Transform the equation

$$
3 x^{2}+8 x y+3 y^{2}-2 x+2 y-2=a^{2}
$$

referred to new axes through $(-1,1)$ rotated through an angle $\frac{\pi}{4}$.
(b) Prove that the straight lines represented by the equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

will be equidistant from the origin if $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$.
(c) Find the equation of the polar of the origin with respect to the conic

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

2. (a) Prove that the pair of lines joining the origin to the points of intersection of the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by the line $l x+m y+n=0$ are coincident if $a^{2} l^{2}+b^{2} m^{2}=n^{2}$.
(b) Reduce the equation

$$
4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0
$$

to the standard form.
(c) Find the equation of the diameter of the conic $4 x^{2}+6 x y-5 y^{2}=1$, conjugate to the diameter $y-2 x=0$.
UniT-II
3. (a) Prove that the locus of the foot of the perpendicular from either focus upon any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is a circle.
(b) Obtain the equation of the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Hence show that $a=b$ if the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is rectangular. What is the value of the eccentricity of the rectangular hyperbola? $2+2+1=5$
(c) The normal at the point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ meets the parabola again at the point $\left(a t_{2}^{2}, 2 a t_{2}\right)$. Prove that $t_{2}=-t_{1}-2 / t_{1}$.
4. (a) Prove that the semi-latus rectum of any conic is the harmonic mean between the segments of any focal chord.
(b) Show that the normal to the rectangular hyperbola $x y=c^{2}$ at the point t meets the curve again at the point t^{\prime} such that $t^{3} t^{\prime}=-1$.
(c) Show that the locus of the poles of normal chords of the parabola $y^{2}=4 a x$ is $(x+2 a) y^{2}+4 a^{3}=0$.

UNiT-III
5. (a) Find the coordinates of the point where the join of $(2,-3,1)$ and $(1,2,-4)$ cuts the plane $2 x+3 y-5 z+3=0$.
(b) Find the equation of the plane which contains the line of intersection of the plane $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$ and which is perpendicular to the plane
$5 x+3 y-6 z+8=0$.
(c) Find the equation of the cone, whose vertex is (α, β, γ) and the base is the parabola $z=0, y^{2}=4 a x$.
6. (a) Find the equation of the cylinder generated by the lines parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ and intersecting the guiding curve $z=3, x^{2}+y^{2}=4$.
(b) Find the equation of the sphere which passes through the points $(3,0,0)$, $(0,-1,0),(0,0,-2)$ and whose centre lies on the plane $3 x+2 y+4 z-1=0$.
(c) Prove that the two lines

$$
\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}
$$

and $\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}$ are coplanar and find their point of intersection.
UnIT-IV
7. (a) Reduce the expression

$$
(\vec{b}+\vec{c}) \cdot\{(\vec{c}+\vec{a}) \times(\vec{a}+\vec{b})\}
$$

in its simplest form and prove that it vanishes when $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
(b) Show that

$$
\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}
$$

(c) If $\vec{r}=a \cos t \hat{i}+a \sin t \hat{j}+a t \tan \alpha \hat{k}$, find
(i) $\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right|$
(ii) $\left[\frac{d \vec{r}}{d t}, \frac{d^{2} \vec{r}}{d t^{2}}, \frac{d^{3} \vec{r}}{d t^{3}}\right]$
8. (a) Show that the necessary and sufficient condition for the vector $\vec{v}(t)$ to have a constant direction is

$$
\begin{equation*}
\vec{v} \times \frac{d \vec{v}}{d t}=\overrightarrow{0} \tag{5}
\end{equation*}
$$

(b) Show that the four points $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar if and only if

$$
\begin{equation*}
[\vec{b}, \vec{c}, \vec{d}]+[\vec{c}, \vec{a}, \vec{d}]+[\vec{a}, \vec{b}, \vec{d}]=[\vec{a}, \vec{b}, \vec{c}] \tag{5}
\end{equation*}
$$

(c) Find the area of the triangle $O A B$ formed by the two points A and B whose position vectors are $\hat{i}+2 \hat{j}+3 \hat{k}$ and $-3 \hat{i}-2 \hat{j}+\hat{k}$ respectively; O being the origin.

UniT-V

9. (a) A particle moves along the curve $x=e^{-t}$, $y=2 \cos 3 t$ and $z=2 \sin 3 t$. Determine the velocity and acceleration at any time t and their magnitudes at $t=0 . \quad 2+1+2=5$
(b) Find the directional derivative of the function $x y^{2}+y z^{2}+z x^{2}$ along the tangent to the curve $x=t, y=t^{2}$ and $z=t^{3}$ at the point $(1,1,1)$.
(c) Show that
(i) $\operatorname{grad}(\vec{r} \cdot \vec{a})=\vec{a}$
(ii) $\operatorname{grad}[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$
where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and \vec{a}, \vec{b} are
constant vectors.

(7)

10. (a) Find the equation of the tangent plane to the surface $z=x^{2}+y^{2}$ at the point (1, -1, 2).
(b) Define curl and divergence of a vector valued function \vec{F}. Show that $\operatorname{div}(\operatorname{curl} \vec{F})=0$. $1+1+3=5$
(c) Let \vec{A} and \vec{B} be vector point functions. Then prove that

$$
\operatorname{div}(\vec{A} \times \vec{B})=\vec{B} \cdot \operatorname{curl} \vec{A}-\vec{A} \cdot \operatorname{curl} \vec{B}
$$

Also, if \vec{A} and \vec{B} are irrotational, then prove that $\vec{A} \times \vec{B}$ is solenoidal. $\quad 4+2=6$

