2021

(July)

MATHEMATICS

(Elective/Honours)

(Geometry and Vector Calculus)

(GHS-21)

Marks : 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit

Unit—I

1. (a) Transform the equation

 $3x^{2} 8xy 3y^{2} 2x 2y 2 a^{2}$ referred to new axes through (1, 1) rotated through an angle $\frac{1}{4}$.

(b) Prove that the straight lines represented by the equation

 ax^2 2hxy by² 2gx 2fy c 0 will be equidistant from the origin if f^4 g^4 $c(bf^2$ $ag^2)$.

20D/1122

(Turn Over)

6

(2)

- (c) Find the equation of the polar of the origin with respect to the conic ax² 2hxy by² 2gx 2fy c 0 4
 2. (a) Prove that the pair of lines joining the prime to the prime of interpreting of a second second
 - origin to the points of intersection of the curve $\frac{x^2}{a^2} \frac{y^2}{b^2}$ 1 by the line lx my n = 0 are coincident if $a^2l^2 b^2m^2 n^2$.

(b) Reduce the equation

to the standard form.

6

(c) Find the equation of the diameter of the conic $4x^2$ 6xy $5y^2$ 1, conjugate to the diameter y 2x 0. 4

 $4x^2$ 4xy y^2 2x 26y 9 0

Unit—II

3. (a) Prove that the locus of the foot of the perpendicular from either focus upon any tangent to the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is a circle.

20D/1122

(Continued)

6

(3)

- (b) Obtain the equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2}$ 1. Hence show that $a \ b$ if the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2}$ 1 is rectangular. What is the value of the eccentricity of the rectangular hyperbola? 2+2+1=5
- (c) The normal at the point $(at_1^2, 2at_1)$ meets the parabola again at the point $(at_2^2, 2at_2)$. Prove that t_2 t_1 $2/t_1$. 4
- **4.** (*a*) Prove that the semi-latus rectum of any conic is the harmonic mean between the segments of any focal chord.
 - (b) Show that the normal to the rectangular hyperbola $xy c^2$ at the point *t* meets the curve again at the point *t* such that $t^3t = 1$.
 - (c) Show that the locus of the poles of normal chords of the parabola y^2 4ax is $(x \ 2a)y^2$ 4a³ 0. 5

UNIT—III

5. (a) Find the coordinates of the point where the join of (2, 3, 1) and (1, 2, 4) cuts the plane 2x 3y 5z 3 0. 5

(4)

- (b) Find the equation of the plane which contains the line of intersection of the plane $x \ 2y \ 3z \ 4 \ 0$ and $2x \ y \ z \ 5 \ 0$ and which is perpendicular to the plane $5x \ 3y \ 6z \ 8 \ 0$.
- (c) Find the equation of the cone, whose vertex is (, ,) and the base is the parabola $z = 0, y^2 + 4ax$. 5
- **6.** (a) Find the equation of the cylinder generated by the lines parallel to the line $\frac{x}{1} \quad \frac{y}{2} \quad \frac{z}{1}$ and intersecting the guiding curve $z \quad 3, x^2 \quad y^2 \quad 4.$
 - (b) Find the equation of the sphere which passes through the points (3, 0, 0),
 (0, 1, 0), (0, 0, 2) and whose centre lies on the plane 3x 2y 4z 1 0.
 - (c) Prove that the two lines

$$\frac{x}{1} \quad \frac{y}{2} \quad \frac{z}{3}$$

and
$$\frac{x}{2} \quad \frac{y}{3} \quad \frac{6}{3} \quad \frac{z}{4}$$
 are coplanar
and find their point of intersection. 5

20D/1122

(Continued)

5

5

20D**/1122**

(Turn Over)

5

5

- 7. (a) Reduce the expression
 - $(\vec{b} \quad \vec{c}) \quad \{ (\vec{c} \quad \vec{a}) \quad (\vec{a} \quad \vec{b}) \}$
 - in its simplest form and prove that it vanishes when $\vec{a}, \vec{b}, \vec{c}$ are coplanar. 5
 - (b) Show that
 - \hat{i} $(\vec{a}$ $\hat{i})$ \hat{j} $(\vec{a}$ $\hat{j})$ \hat{k} $(\vec{a}$ $\hat{k})$ $2\vec{a}$ 4
 - (c) If \vec{r} $a\cos t\hat{i}$ $a\sin t\hat{j}$ $at \tan \hat{k}$, find

(i)
$$\left| \frac{d\vec{r}}{dt} \quad \frac{d^{2}\vec{r}}{dt^{2}} \right|$$

(ii) $\frac{d\vec{r}}{dt}, \frac{d^{2}\vec{r}}{dt^{2}}, \frac{d^{3}\vec{r}}{dt^{3}}$ $3+3=6$

8. (a) Show that the necessary and sufficient condition for the vector $\vec{v}(t)$ to have a constant direction is

$$\vec{v} \quad \frac{d\vec{v}}{dt} \quad \vec{0} \qquad 5$$

- (b) Show that the four points \vec{a} , \vec{b} , \vec{c} and \vec{d} are coplanar if and only if
 - $[\vec{b}, \vec{c}, \vec{d}]$ $[\vec{c}, \vec{a}, \vec{d}]$ $[\vec{a}, \vec{b}, \vec{d}]$ $[\vec{a}, \vec{b}, \vec{c}]$ 5

(6)

(c) Find the area of the triangle OAB formed by the two points A and B whose position vectors are $\hat{i} \ 2\hat{j} \ 3\hat{k}$ and $3\hat{i} \ 2\hat{j} \ \hat{k}$ respectively; O being the origin.

UNIT—V

- 9. (a) A particle moves along the curve x e^t,
 y 2cos3t and z 2sin3t. Determine the velocity and acceleration at any time t and their magnitudes at t 0. 2+1+2=5
 - (b) Find the directional derivative of the function $xy^2 yz^2 zx^2$ along the tangent to the curve $x t, y t^2$ and $z t^3$ at the point (1, 1, 1). 5
 - (c) Show that (i) grad $(\vec{r} \ \vec{a}) \ \vec{a}$ (ii) grad $[\vec{r}, \vec{a}, \vec{b}] \ \vec{a} \ \vec{b}$ where $\vec{r} \ x \hat{i} \ y \hat{j} \ z \hat{k}$ and $\vec{a}, \ \vec{b}$ are constant vectors. 3+2=5

20D/1122

(Turn Over)

20D/1122

(Continued)

5

(7)

- **10.** (a) Find the equation of the tangent plane to the surface $z = x^2 y^2$ at the point (1, 1, 2).
 - (b) Define curl and divergence of a vector valued function \vec{F} . Show that div(curl \vec{F}) 0. 1+1+3=5
 - (c) Let \overrightarrow{A} and \overrightarrow{B} be vector point functions. Then prove that

 $\operatorname{div}(\vec{A} \quad \vec{B}) \quad \vec{B} \quad \operatorname{curl} \vec{A} \quad \vec{A} \quad \operatorname{curl} \vec{B}$

Also, if \overrightarrow{A} and \overrightarrow{B} are irrotational, then prove that \overrightarrow{A} \overrightarrow{B} is solenoidal. 4+2=6

 $\star \star \star$