2021

(July)
MATHEMATICS
(Elective/Honours)

(Geometry and Vector Calculus)

(GHS-21)
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit
UniT-I

1. (a) If by rotation of the rectangular axes about the origin, the expression $a x^{2}+2 h x y+b y^{2}$ changes to $a^{\prime} x^{\prime 2}+b^{\prime} y^{\prime 2}+2 h^{\prime} x^{\prime} y^{\prime}$, then prove that $a+b=a^{\prime}+b^{\prime}$ and $a b-h^{2}=a^{\prime} b^{\prime}-h^{\prime 2}$.
(b) Reduce the equation

$$
9 x^{2}-24 x y+16 y^{2}-18 x-101 y+19=0
$$

to standard form and find the respective conic.
(c) Show that the equation

$$
6 x^{2}-11 x y-10 y^{2}-35 y+14 x=0
$$

represents a pair of straight lines and find the distance between them.
2. (a) Find the equations of the asymptotes to the conic $2 x y+5 x-2 y-9=0$.
(b) Find the diameter of the conic

$$
15 x^{2}-20 x y+16 y^{2}=1
$$

conjugate to the diameter $y+2 x=0$.
(c) Find the equation of the tangent to the conic $4 x^{2}+3 x y+2 y^{2}-3 x+5 y+7=0$ at the point $(1,-2)$.
(d) Prove that the points $(1,2)$ and $(-2,3)$ are conjugates with respect to the conic

$$
\begin{equation*}
2 x^{2}+6 x y+y^{2}+4 x-2 y+8=0 \tag{3}
\end{equation*}
$$

Unit—II
3. (a) Find the equation of the parabola whose focus is the point $(-1,1)$ and whose directrix is the straight line $x+y+1=0$. Find also the length of the latus rectum.
(b) If $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ be the extremities of a focal chord of a parabola $y^{2}=4 a x$, then prove that $t_{1} t_{2}=-1$.
(c) Show that the condition that the line $y=m x+c$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $c^{2}=a^{2} m^{2}+b^{2}$.
4. (a) Prove that the chords of a hyperbola which touch the conjugate hyperbola are bisected at the point of contact.
(b) Show that the locus of the point of intersection of tangents at two points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where the difference of their eccentric angle is 2α, is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\sec ^{2} \alpha$.
(c) Show that the locus of the poles of normal chords of the parabola $y^{2}=4 a x$ is $(x+2 a) y^{2}+4 a^{3}=0$.
Unit—III
5. (a) Find the length and equations of the line of shortest distance between the lines

$$
\begin{equation*}
\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2} \text { and } \frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1} \tag{5}
\end{equation*}
$$

UnIT—IV
7. (a) For any three non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ show that

$$
[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]
$$

(b) If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the points A, B, C, then show that the vector $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is perpendicular to the plane $A B C$.
(c) Prove that the necessary and sufficient condition that a proper vector $\vec{u}(t)$ has constant magnitude is that $\vec{u} \cdot \frac{d \vec{u}}{d t}=0$.
8. (a) If $\vec{r}=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k} \quad$ and $\vec{s}=\sin t \hat{i}-\cos t \hat{j}$, then find the values of $\frac{d}{d t}(\vec{r} \cdot \vec{s})$ and $\frac{d}{d t}(\vec{r} \times \vec{s})$.
(b) If $\vec{r}=\cos \omega t \hat{i}+\sin \omega t \hat{j}$, where ω is a constant, then show that $\vec{r} \times \frac{d \vec{r}}{d t}$ is a constant vector.
(c) Show that

$$
(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})
$$

when and only when $(\vec{c} \times \vec{a}) \times \vec{b}=0$.

UNIT-V
9. (a) Find the directional derivative of the function $f(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of the vector $2 i-j-2 k$.

5
(b) Prove that grad $r^{m}=m r^{m-2} \vec{r}$ where $r=|\vec{r}|$. 5
(c) If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, then prove that $\vec{F} \cdot \operatorname{curl} \vec{F}=0$.
10. (a) Prove that $\operatorname{div}\left(\frac{\vec{r}}{r^{3}}\right)=0$, where $r=|\vec{r}|$.
(b) If $\vec{f}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$, then find $\operatorname{div} \vec{f}$ and curl \vec{f}.
(c) (i) Determine a so that the vector

$$
\vec{v}=(2 x+3 y) \hat{i}+(3 a y+z) \hat{j}+(x-4 z) \hat{k}
$$

becomes solenoidal.
(ii) If $u=x^{2}-y^{2}+4 z$, then show that $\nabla^{2} u=0$.

