2021

(July)

MATHEMATICS

(Elective/Honours)

(Geometry and Vector Calculus)

(GHS-21)

Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit

Unit—I

- **1.** (a) If by rotation of the rectangular axes about the origin, the expression $ax^2 \ 2hxy \ by^2$ changes to $ax^2 \ by^2 \ 2hxy$, then prove that $a \ b \ a \ b$ and $ab \ h^2 \ ab \ h^2$. 5
 - (b) Reduce the equation

 $9x^2$ 24*xy* 16 y^2 18*x* 101*y* 19 0

to standard form and find the respective conic.

20D/1121

(Turn Over)

5

20D/1121

(2)

	(c)	Show that the equation	
		$6x^2$ 11xy 10y ² 35y 14x 0	
		represents a pair of straight lines and find the distance between them.	5
2.	(a)	Find the equations of the asymptotes to the conic $2xy$ $5x$ $2y$ 9 0.	4
	(b)	Find the diameter of the conic	
		$15x^2$ 20xy $16y^2$ 1	
		conjugate to the diameter $y 2x 0$.	4
	(c)	Find the equation of the tangent to the conic $4x^2$ $3xy$ $2y^2$ $3x$ $5y$ 7 0 at the point (1, 2).	4
	(d)	Prove that the points (1, 2) and (2, 3) are conjugates with respect to the conic	
		$2x^2$ 6xy y^2 4x 2y 8 0	3
		Unit—II	
3.	(a)	Find the equation of the parabola whose focus is the point $(1, 1)$ and whose directrix is the straight line $x \ y \ 1 \ 0$. Find also the length of the latus rectum.	5
	(b)	If $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ be the extremities of a focal chord of a parabola y^2 4 <i>ax</i> , then prove that t_1t_2 1.	Ц
			5

(Continued)

(3)

- (c) Show that the condition that the line y mx c is a tangent to the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 = b^2$. 5
- **4.** (a) Prove that the chords of a hyperbola which touch the conjugate hyperbola are bisected at the point of contact. 5
 - (b) Show that the locus of the point of intersection of tangents at two points on the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2}$ 1, where the

difference of their eccentric angle is 2,

is
$$\frac{x^2}{a^2} \frac{y^2}{b^2} \sec^2$$
. 5

(c) Show that the locus of the poles of normal chords of the parabola y^2 4ax is $(x \ 2a)y^2$ 4 a^3 0. 5

UNIT—III

- **5.** (a) Find the length and equations of the line of shortest distance between the lines
 - $\frac{x \ 3}{4} \ \frac{y \ 6}{3} \ \frac{z}{2} \text{ and } \frac{x \ 2}{4} \ \frac{y}{1} \ \frac{z \ 7}{1} \ 5$

20D/1121

(Turn Over)

(4)

(b) Prove that the lines

$$\frac{x \ 1}{1} \ \frac{y \ 1}{2} \ \frac{z \ 1}{3}$$
 and $\frac{x \ 4}{2} \ \frac{y \ 4}{3} \ \frac{z \ 8}{4}$

are coplanar and find their point of intersection.

- (c) Find the equation of the cone whose vertex is the origin and base the circle $x \ a, y^2 \ z^2 \ b^2$. 5
- **6.** (a) Find the equation of the right circular cylinder whose guiding curve is $x^2 y^2 z^2 9$, x y z 3 and z-axis as its generator.

5

5

5

- (b) Find the equation of the sphere which touches the sphere x² y² z² 21 at (1, 2, 4) and passes through the point (3, 4, 0).
- (c) Find the radius of the circle where the plane $x \ 2y \ 2z \ 3$ intersects the sphere

 $x^2 y^2 z^2 8x 4y 8z 45 5$

20D**/1121**

(Continued)

- **7.** (a) For any three non-zero vectors \vec{a} , \vec{b} , \vec{c} show that
 - $[\vec{a} \quad \vec{b}, \ \vec{b} \quad \vec{c}, \ \vec{c} \quad \vec{a}] \quad 2[\vec{a}, \ \vec{b}, \ \vec{c}] \qquad 5$

5

5

5

- (b) If \vec{a} , \vec{b} , \vec{c} are position vectors of the points *A*, *B*, *C*, then show that the vector \vec{a} \vec{b} \vec{b} \vec{c} \vec{c} \vec{a} is perpendicular to the plane *ABC*.
- (c) Prove that the necessary and sufficient condition that a proper vector $\vec{u}(t)$ has constant magnitude is that $\vec{u} \quad \frac{d\vec{u}}{dt} = 0.$
- 8. (a) If $\vec{r} \quad 5t^2\hat{i} \quad t\hat{j} \quad t^3\hat{k}$ and $\vec{s} \quad \sin t\hat{i} \quad \cos t\hat{j}$, then find the values of $\frac{d}{dt}(\vec{r} \quad \vec{s})$ and $\frac{d}{dt}(\vec{r} \quad \vec{s})$. 5
 - (b) If $\vec{r} \cos t\hat{i} \sin t\hat{j}$, where is a constant, then show that $\vec{r} \frac{d\vec{r}}{dt}$ is a constant vector.
 - (c) Show that

 $(\vec{a} \quad \vec{b}) \quad \vec{c} \quad \vec{a} \quad (\vec{b} \quad \vec{c})$ when and only when $(\vec{c} \quad \vec{a}) \quad \vec{b} \quad 0.$ 5 20D/1121 (Turn Over)

(6)

UNIT—V

9. (a) Find the directional derivative of the function $f(x, y, z) = x^2 y z + 4x z^2$ at the point (1, 2, 1) in the direction of the vector $2i \quad j \quad 2k$. 5 (b) Prove that grad $r^m mr^{m-2} \overrightarrow{r}$ where $r |\vec{r}|$. 5 (c) If \vec{F} $(x \ y \ 1)\hat{i}$ \hat{j} $(x \ y)\hat{k}$, then prove that \overrightarrow{F} curl \overrightarrow{F} 0. 5 **10.** (a) Prove that div $\frac{\vec{r}}{r^3}$ 0, where $r |\vec{r}|$. 5 (b) If $\vec{f} = x^2 y \hat{i} = 2xz \hat{j} = 2yz \hat{k}$, then find div \vec{f} and curl \vec{f} . 2+3=5(i) Determine a so that the vector (c) \vec{v} (2x 3y) \hat{i} (3ay z) \hat{j} (x 4z) \hat{k} becomes solenoidal. 2 (*ii*) If $u x^2 y^2 4z$, then show that ^{2}u 0. 3

 $\star \star \star$

20D—PDF**/1121**