2/EH-24 (ii) (Syllabus-2015)

2021

(July)
PHYSICS
(Elective/Honours)

(Electromagnetism, Electronics-I)

> [PHYO2 (T)]
> Marks : 56

Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) The total charge within a sphere of radius r is given by

$$
Q=q \frac{r^{2}}{a^{2}}\left(e^{-\frac{r}{a}}-e^{-\frac{2 r}{a}}\right)
$$

where q and a are constants. Calculate the electric potential and the corresponding electric field at a point outside the sphere. $\quad 1 \frac{1}{2}+1 \frac{1}{2}=3$
(b) Calculate the value of gyromagnetic ratio and the value of Bohr magneton of an electron.

$$
11 / 2+1 \frac{1}{2}=3
$$

(c) A steady current of 2 A flows through a coil of self-inductance 30 mH when connected to a 20 V DC supply. Calculate the current and power factor in the coil when it is reconnected to a $200 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ power supply. $11 / 2+1 \frac{1}{2}=3$
(d) Reduce the following circuit to Thevenin's equivalent circuit and hence calculate the current through the load resistance $\left(R_{L}\right)$:

2. (a) Deduce Gauss' law in a dielectric medium.
(b) Explain electric polarization. Establish the relation between \vec{D}, \vec{E} and \vec{P} where \vec{D} is the electric displacement vector, \vec{E} is the electric field intensity and \vec{P} is the electric polarization vector.

$$
2+4=6
$$

3. (a) Obtain the expression of electric potential and electric field at any arbitrary point due to an electric dipole.

$$
3+3=6
$$

(b) State Biot-Savart law and hence using this law, obtain the expression of magnetic field due to an infinitely long straight current carrying conductor. $1+4=5$
4. (a) Obtain the expression of resonant frequency of an $L-C-R$ parallel circuit. Why is the circuit called 'rejector circuit'?
(b) Discuss the growth and decay of electric current in $C-R$ circuit. Define the time constant of the circuit.
5. (a) State Faraday's law of electromagnetic induction. Obtain the differential form of Faraday's law.
(b) Give the principle, construction, working and theory of transformer.

$$
1+2+1+2=6
$$

6. (a) State and prove superposition theorem
(b) Explain various characteristics of a bipolar junction transistor in CE configuration. $1+1+1=3$
7. (a) What is a multi-stage transistor amplifier? With the help of a neatly labelled circuit diagram, briefly explain the working of a two-stage $R-C$ coupled amplifier in CE configuration. $1+1+4=6$
(b) What is an oscillator? With the help of a block diagram, explain the functions of the essential components of an oscillator.
$1+1+3=5$
8. (a) With the help of circuit diagrams using diodes, explain the working of OR and AND gates. Write down their truth tables.
(b) Describe the principle of working of an ideal operational amplifier (OP-AMP) Give the characteristics of an ideal operational amplifier (OP-AMP). $2+3=5$

20D-PDF/1118
2/EH-24 (ii) (Syllabus-2015)

