2021

(July)

STATISTICS

(Honours)

(Statistical Inference)

```
[ STH-61(TH) ]
```

Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
Unit-I

1. (a) Define MVUE. If T_{1} and T_{2} are minimum variance unbiased estimators of $\gamma(\theta)$, then show that $T_{1}=T_{2}$ almost surely.
$2+4=6$
(b) State and prove the Cramer-Rao inequality.
2. (a) Define consistent estimator. Show that the sample mean \bar{x} based on a random sample of size n from $N\left(\mu, \sigma^{2}\right)$ is a consistent estimator of the population mean μ.
$2+4=6$
(b) Define sufficient statistic. Show that if σ^{2} is known in a random sample from a normal population, the sample mean \bar{X} is a sufficient statistic for mean μ. $2+4=6$
UNIT—II
3. (a) Define likelihood function and state the regularity conditions for maximum likelihood estimators to be consistent and asymptotically normal.
(b) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a random sample of size n. Also find its variance.
(c) Explain the method of moments for estimating parameters. What are the properties of the estimates obtained by this method?
4. (a) Discuss the concept of interval estimation and provide suitable illustration.
(b) Obtain the $100(1-\alpha) \%$ confidence intervals for the parameter θ of the normal distribution

$$
f(x, \theta, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\theta}{\sigma}\right)^{2}},-\infty<x<\infty
$$

UnIT—III
5. (a) Define the following :
(i) Statistical hypothesis
(ii) Test of significance
(iii) Null hypothesis
(iv) Critical region
(v) Size of the test
(vi) Power of the test

(5)

8. (a) Define OC function and ASN function of SPRT.
(b) Let X have the distribution

$$
\begin{array}{rl}
f(x, \theta)=\theta^{x}(1-\theta)^{1-x}, x=0 & 1 \\
& 0<\theta<1
\end{array}
$$

For testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ construct the SPRT and obtain its OC function.
UniT-V
9. (a) Differentiate between large sample and small sample tests and discuss their consequences in testing of hypothesis problems. How does the central limit theorem help in deriving large sample tests?
$2+2+2=6$
(b) Describe the large sample test of significance for single-binomial proportion. Also write down the confidence interval for the proportion.

$$
4+1=5
$$

10. (a) Obtain the test of significance for single mean from normal population with mean μ and variance σ^{2}. Hence write down the related confidence interval.
$3+2=5$
