6/H-28 (vii) (Syllabus-2015)

2021

(July)

STATISTICS

(Honours)

(Statistical Inference)

[STH-61(TH)]

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, taking **one** from each Unit

UNIT—I

- **1.** (a) Define MVUE. If T_1 and T_2 are minimum variance unbiased estimators of (), then show that T_1 T_2 almost surely.
 - (b) State and prove the Cramer-Rao inequality. 6

(2)

- **2.** (a) Define consistent estimator. Show that the sample mean \bar{x} based on a random sample of size n from $N(\ ,\ ^2)$ is a consistent estimator of the population mean . 2+4=6
 - (b) Define sufficient statistic. Show that if 2 is known in a random sample from a normal population, the sample mean \overline{X} is a sufficient statistic for mean . 2+4=6

UNIT—II

- **3.** (a) Define likelihood function and state the regularity conditions for maximum likelihood estimators to be consistent and asymptotically normal. 1+2=3
 - (b) Find the maximum likelihood estimate for the parameter of a Poisson distribution on the basis of a random sample of size *n*. Also find its variance.
 - (c) Explain the method of moments for estimating parameters. What are the properties of the estimates obtained by this method? 2+3=5

20D**/1530** (Turn Over)

20D**/1530**

(Continued)

3

- **4.** (a) Discuss the concept of interval estimation and provide suitable illustration.
 - (b) Obtain the 100(1)% confidence intervals for the parameter of the normal distribution

$$f(x, ,) = \frac{1}{\sqrt{2}}e^{-\frac{1}{2}\frac{x}{2}}$$

6

5

UNIT-III

- **5.** (a) Define the following: $1 \times 6 = 6$
 - (i) Statistical hypothesis
 - (ii) Test of significance
 - (iii) Null hypothesis
 - (iv) Critical region
 - (v) Size of the test
 - (vi) Power of the test

(b) If x 1 is the critical region for testing H_0 : 2 against the alternative H_1 : 1, on the basis of the single-observation from the population

 $f(x,) e^{(-x)}, 0 x$

compute the size of the test and the power of the test.

- **6.** (a) Explain the following terms: 2+2+2=6
 - (i) Most powerful test
 - (ii) Uniformly most powerful test
 - (iii) Unbiased test
 - (b) Let X_1, X_2, \dots, X_n be a random sample from N(,) where is known. Obtain the MP test for testing $H_0: 0$ against $H_1: 1(,1,0)$.

UNIT-IV

- 7. (a) State the Neyman-Pearson lemma.

 What are its differences from the likelihood ratio test? 2+3=5
 - (b) Construct the likelihood ratio test for testing H_0 : 0 versus H_1 : based on a sample of size n from $N(, ^2)$, 2 0.

20D/1530

(Turn Over)

20D/**1530**

(Continued)

5

5

6

- **8.** (a) Define OC function and ASN function of SPRT. 2+2=4
 - (b) Let X have the distribution

$$f(x,)$$
 $^{x}(1)^{1 x}, x 0, 1 0 1$

For testing H_0 : 0 against H_1 : construct the SPRT and obtain its OC function. 3+4=7

UNIT-V

- Differentiate between large sample and small sample tests and discuss their consequences in testing of hypothesis problems. How does the central limit theorem help in deriving large sample tests? 2+2+2=6
 - Describe the large sample test of significance single-binomial for proportion. Also write down the confidence interval for the proportion.

4+1=5

10. (a) Obtain the test of significance for single mean from normal population with and variance ². Hence write down the related confidence interval.

3+2=5(Turn Over) (b) Derive the test statistic (for large samples) for the test of significance for difference of means. Also write down the related confidence interval. 4+2=6

* * *