2021

(July)

MATHEMATICS

(Honours)

(Discrete Mathematics)

> (HOPT-62 : OP5)

Marks : 75
Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
Unit—I

1. (a) Show that every sequence of distinct $\left(n^{2}+1\right)$ real numbers contains a subsequence of length $(n+1)$ which is strictly increasing or strictly decreasing.
(b) Find the solution of the recurrence relation $a_{n}=5 a_{n-1}+3$ for $n \geq 2, a_{1}=2$.
(c) Show that $2^{n}+1$ is divisible by 3 for all odd integers n.
2. (a) Find in how many ways an odd number of objects can be chosen from n objects.
(b) Let $a, b, \in \mathbb{N}$ be coprimes. Show that $a x-b y=1$ for some $x, y \in \mathbb{N}$.
(c) Solve the equation

$$
a_{r}-5 a_{r-1}+6 a_{r-2}=2^{r}+2, r \geq 2
$$

with initial condition $a_{0}=1, a_{1}=1$.
UniT—II
3. (a) Find the Hasse diagram of the partially ordered set (A, \leq) if $A=\{2,3,4,6,8,12,16,48\}$ and the partial order \leq on A is defined by $x \leq y$ if and only if x divides $y ; x, y \in A$.
(b) Let (X, R) be a partially ordered set. Show that the dual (X, \bar{R}) of (X, R) is also a partially ordered set.
(c) Let (L, \leq) be a lattice and $a, b, c, d \in L$. Show that-

$$
\begin{aligned}
& \text { (i) } a \leq b, c \leq d \Rightarrow a \wedge c \leq b \wedge d \\
& \text { (ii) } a \leq b, c \leq d \Rightarrow a \vee c \leq b \vee d
\end{aligned}
$$

4. (a) Let L, K be two lattices and $f: L \rightarrow K$ be an isomorphism. Show that $a \leq b$ if and only if $f(a) \leq f(b), \forall a, b \in L$.
(b) Let L, K be two lattices. Define \leq on $L \times K$ as follows : for $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in L \times K$, $\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right)$ if and only if $a_{1} \leq b_{1}$, and $a_{2} \leq b_{2}$. Show that $(L \times K, \leq)$ is a lattice.
(c) Give an example with justification of two isomorphic lattices L and K with $L \neq K$.

UniT-III
5. (a) Show that in a bounded distributive lattice, complements are unique.
(b) Using Karnaugh map, simplify the Boolean function
$f(x, y, z)=x y z+x y z^{\prime}+x y^{\prime} z+x^{\prime} y z$
(c) State and prove a necessary condition for a non-empty subset of a Boolean algebra to be a subalgebra.
6. (a) If a, b, c are elements of a Boolean algebra B, show that

$$
a+\left(a^{\prime} c+b\right)=\left(a+a^{\prime} c\right)+b
$$

for any $a^{\prime} \in B$.
(b) Show that the dual of a modular lattice is a modular lattice.
(c) Draw the bridge circuit for the Boolean function

$$
\begin{equation*}
f=x w^{\prime}+y^{\prime} u v+\left(x z+y^{\prime}\right)\left(z w^{\prime}+u v\right) \tag{5}
\end{equation*}
$$

Unit-IV
7. (a) Show that a graph is bipartite if it has no odd cycle.
(b) Show that there is no graph having 5 vertices whose degrees of the vertices are $1,2,2,4$ and 5 respectively.
(c) Show that a connected graph is Eulerian if all its vertices have even degree.
8. (a) Show that every graph having degree of each vertex even decomposes into cycles.
(b) Find the least number of vertices needed to construct a complete graph with at least 1000 edges.
(c) Show that a graph with n vertices is Hamiltonian if the sum of the degrees of each pair of non-adjacent vertices is greater than or equal to $(n-1)$.

Unit-V

9. (a) Show that an edge of a connected graph is a bridge if and only if there exist vertices u and v such that every path between these two vertices contains this edge.

(5)

(b) Give examples with justification of the following :
$2+2=4$
(i) A graph with 2 cut vertices but no edge cut
(ii) A graph having connectivity 2
(c) Let G be a connected graph with at least two vertices. If the number of edges in G is less than the number of vertices, show that G has a vertex of degree one.
10. (a) Show that a graph is a tree if and only if it is connected and every edge in it is a
bridge.
(b) Show that every cut set in a connected graph contains at least one branch of each spanning tree of the graph.
(c) Show that a graph G is 2 -connected if and only if G is connected with at least three vertices but no cut vertex.

