2021

(July)

MATHEMATICS

(Honours)

(Discrete Mathematics)

(HOPT-62 : OP5)

Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

1.	(a)	Show that every sequence of distinct	
		$(n^2$ 1) real numbers contains a	
		subsequence of length $(n \ 1)$ which is	
		strictly increasing or strictly decreasing.	5

- (b) Find the solution of the recurrence relation a_n 5 a_{n-1} 3 for n 2, a_1 2. 5
- Show that 2^n 1 is divisible by 3 for all (c) odd integers n.

20D/1308

(Turn Over)

5

(2)

2.	(a)	Find in how many ways an odd number of objects can be chosen from <i>n</i> objects.	5
	(b)	Let a, b, \mathbb{N} be coprimes. Show that $ax \ by \ 1$ for some $x, y \ \mathbb{N}$.	5
	(c)	Solve the equation	
		$a_r 5a_{r-1} 6a_{r-2} 2^r 2, r 2$	
		with initial condition a_0 1, a_1 1.	5
		Unit—II	
3.	(a)	Find the Hasse diagram of the partially ordered set $(A,)$ if $A \{2, 3, 4, 6, 8, 12, 16, 48\}$ and the partial order on A is defined by $x y$ if and only if x divides y ; x , $y A$.	4
	(b)	Let (X, R) be a partially ordered set. Show that the dual (X, \overline{R}) of (X, R) is also a partially ordered set.	5
	(c)	Let $(L,)$ be a lattice and $a, b, c, d L$. Show that—	
		(i) a b, c d a c b d	
		(ii) a b, c d a c b d	6
4.	(a)	Let L , K be two lattices and $f: L$ K be an isomorphism. Show that a b if and only if $f(a)$ $f(b)$, a , b L .	5
20D /1308 (Continued)			

(Continued)

(3)

- (b) Let L, K be two lattices. Define on L K as follows : for (a_1, b_1) , (a_2, b_2) L K, (a_1, b_1) (a_2, b_2) if and only if a_1 b_1 , and a_2 b_2 . Show that (L K,) is a lattice. 6
- (c) Give an example with justification of two isomorphic lattices L and K with L K.

UNIT—III

- **5.** (a) Show that in a bounded distributive lattice, complements are unique. 4
 - (b) Using Karnaugh map, simplify the Boolean function

 $f(x, y, z) \quad xyz \quad xyz \quad xyz \quad x yz \qquad 6$

- (c) State and prove a necessary condition for a non-empty subset of a Boolean algebra to be a subalgebra.
- **6.** (a) If a, b, c are elements of a Boolean algebra B, show that

a (ac b) (a ac) b

- for any a = B.
- (b) Show that the dual of a modular latticeis a modular lattice.
- (c) Draw the bridge circuit for the Boolean function

f xw y uv (xz y) (zw uv) 5

20D**/1308**

(Turn Over)

5

(4)

UNIT-IV

- 7. (a) Show that a graph is bipartite if it has no odd cycle.5
 - (b) Show that there is no graph having 5 vertices whose degrees of the vertices are 1, 2, 2, 4 and 5 respectively.
 - (c) Show that a connected graph is Eulerian if all its vertices have even degree.5
- **8.** (a) Show that every graph having degree of each vertex even decomposes into cycles.
 - (b) Find the least number of vertices needed to construct a complete graph with at least 1000 edges.
 - (c) Show that a graph with n vertices is Hamiltonian if the sum of the degrees of each pair of non-adjacent vertices is greater than or equal to $(n \ 1)$.

UNIT-V

- **9.** (a) Show that an edge of a connected graph is a bridge if and only if there exist vertices *u* and *v* such that every path between these two vertices contains this edge.
- 20D/1308

5

5

4

6

5

(5)

- (b) Give examples with justification of the following : 2+2=4
 - (i) A graph with 2 cut vertices but no edge cut
 - (ii) A graph having connectivity 2
- (c) Let G be a connected graph with at least two vertices. If the number of edges in G is less than the number of vertices, show that G has a vertex of degree one.
- **10.** (*a*) Show that a graph is a tree if and only if it is connected and every edge in it is a bridge.
 - (b) Show that every cut set in a connected graph contains at least one branch of each spanning tree of the graph.

5

(c) Show that a graph G is 2-connected if and only if G is connected with at least three vertices but no cut vertex.

 $\star \star \star$

20D—PDF**/1308** 6/H-29 (viii) (e) (Syllabus-2015)