2021

(July)

MATHEMATICS

(Honours)

(Hydromechanics)

(HOPT-62 : OP3)
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit
UNIT—I

1. (a) Explain what you mean by equation of continuity. Derive the equation of continuity by Euler's method. $2+6=8$
(b) Prove that liquid motion is possible when velocity at a point (x, y, z) is given by

$$
u=\frac{3 x^{2}-r^{2}}{r^{5}}, v=\frac{x y}{r^{5}}, w=\frac{3 x z}{r^{5}}
$$

where $r^{2}=x^{2}+y^{2}+z^{2}, \quad$ and the streamlines are the intersection of the surfaces $\left(x^{2}+y^{2}+z^{2}\right)^{3}=c\left(y^{2}+z^{2}\right)^{2}$, by the planes passing through x-axis.
2. (a) Show that the equation of continuity of every particle moving on the surface of a sphere is

$$
\frac{\partial \rho}{\partial t} \cos \theta+\frac{\partial}{\partial \theta}(\rho \omega \cos \theta)+\frac{\partial}{\partial \phi}\left(\rho \omega^{\prime} \cos \theta\right)=0
$$

ρ being the density, θ, ϕ the latitude and longitude of any element and ω, ω^{\prime} the angular velocities of the element in latitude and longitude respectively.
(b) Define streamline motion and turbulent motion of a fluid. Are streamlines and path lines of particle of a fluid always the same? Justify your answer.
(c) Show that the ellipsoid

$$
\frac{x^{2}}{a^{2} k^{2} t^{2 n}}+k t^{n}\left(\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)=1
$$

is a possible form of the boundary surface of a liquid.

UNIT-II
3. (a) A sphere of radius a is surrounded by infinite liquid of density ρ, the pressure at infinity being \bar{w} the sphere is suddenly annihilated. Show that the pressure at a distance r from the centre immediately falls to $\bar{w}\left(1-\frac{a}{r}\right)$.
(b) Show that the impulsive pressure of a fluid satisfies Laplace's equation.
4. (a) Show that a steady motion of a fluid of density ρ and velocity q under an external force derivable from velocity potential Ω satisfies the equation

$$
\int \frac{d p}{\rho}+\frac{1}{2} q^{2}+\Omega=C
$$

where C is a constant.
(b) An incompressible fluid is contained within the region bounded by two concentric rigid spherical surfaces of radii $R_{1}, R_{2},\left(R_{2}>R_{1}\right)$. The fluid is initially at rest. If the inner surface is now given a sudden velocity $u \vec{i}$, where \vec{i} is a constant unit vector, show that the impulsive thrust on the outer surface is

$$
2 \pi \rho R_{1}^{3} R_{2}^{3}\left(R_{2}^{3}-R_{1}^{3}\right)^{-1} u \vec{i}
$$

where ρ is the fluid density.
UniT—III
5. (a) Show that in the motion of a fluid in two dimensions, if the coordinates (x, y) of an element at any time be expressed in terms of the initial co-ordinates (α, β) and the time, the motion is irrotational if

$$
\frac{\partial(u, x)}{\partial(\alpha, \beta)}+\frac{\partial(v, y)}{\partial(\alpha, \beta)}=0
$$

where u and v are velocity components.
(b) In a fluid motion, a doublet of strength μ makes an angle α with the x-axis. Show that the complex potential ω is given by $\omega=\frac{\mu e^{i \alpha}}{z}$.
(c) Define the terms 'source' and 'sink'.
6. (a) Find Stokes' stream function for a fluid in motion for a uniform line source of strength m.
(b) Let the coordinates of two doublets of strength m_{1} and m_{2} situated at A and B be $\left(0,0, c_{1}\right)$ and $\left(0,0, c_{2}\right)$ respectively and their axes being directed towards and away from the origin respectively. Show that

$$
\frac{m_{2}}{m_{1}}=\left(\frac{c_{2}}{c_{1}}\right)^{3 / 2}
$$

if there is no transport of fluid over the surface of the sphere $x^{2}+y^{2}+z^{2}=c_{1} c_{2}$.
UniT—IV
7. (a) Discuss the equilibrium of a body floating in more than one liquid.
(b) Let the forces per unit mass acting on an element of fluid at the point (x, y, z) parallel to axes be proportional to

$$
\begin{gathered}
y^{2}+2 \alpha y z+z^{2}, z^{2}+2 \beta z x+x^{2} \\
x^{2}+2 \gamma x y+y^{2}
\end{gathered}
$$

Show that the equilibrium is possible if $2 \alpha=2 \beta=2 \gamma=1$.
(c) A small uniform circular tube whose plane is vertical contains equal quantities of fluids of densities ρ and σ, $(\rho>\sigma)$, which do not mix. If they together fill half the tube, show that the radius passing through the common surface makes with the vertical an angle $\tan ^{-1} \frac{\rho-\sigma}{\rho+\sigma}$.
8. (a) Find the condition for equilibrium of a fluid under pressure.
(b) A thin uniform rod of weight W has a particle of weight w attached to one end. It is floating in an inclined position in water with this end immersed, Show that the length of the rod above water is $\frac{w}{w+W}$ times the length of the rod.
(c) A homogeneous circular cylinder of length h, radius a and specific gravity s, floats in water. Show that the position with the axis vertical is stable if $\frac{a^{2}}{h^{2}}>2 s(1-s)$.

UniT-V

9. (a) A cone full of water is placed on a horizontal table. Find the thrust on its base.
(b) A hemispherical bowl is filled with water. Show that the horizontal fluid thrust on one half of the surface divided by a vertical diametrical plane is $\frac{1}{\pi}$ times the magnitude of the resultant fluid thrust on the whole surface.
(c) Find the centre of pressure of a circular area of radius a immersed in a fluid depth of whose centre is h.
10. (a) Find the condition for equilibrium of an isothermal atmosphere if gravity remains constant.
(b) A rectangle is immersed vertically in a heavy homogeneous liquid with two of its sides horizontal and at a depth α and β below the surface. Show that the depth of the centre of pressure is

$$
\frac{2}{3} \frac{\alpha^{2}+\alpha \beta+\beta^{2}}{\alpha \beta}
$$

(c) If the law connecting the pressure and density of the air is $p=\lambda \rho^{n}$, show that the height of the atmosphere is $\frac{n}{n-1}$ times the homogeneous atmosphere neglecting variations of gravity and temperature.

