2021

(July)

PHYSICS

(Elective/Honours)

(Atomic, Nuclear and Solid-state Physics)

[PHY 04 (T)]
Marks : 56
Time: 3 hours
The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. Answer any four of the following questions :

$$
3 \times 4=12
$$

(a) Ground state energy of hydrogen atom is -13.6 eV . Calculate the energy and frequency of the spectral line emitted when the electron jumps from $n=3$ to $n=2$ orbits.
(b) Monochromatic X-ray of wavelength $0 \cdot 124 \AA$ A , undergoes Compton scattering from a carbon block. Calculate the wavelength of the ray scattered through 60°.
(c) A carbon specimen found in a cave contains $\frac{1}{8}$ as much C^{14} as in an equal amount of carbon in living matter. Calculate the approximate age of the specimen. Half-life of C^{14} is 5568 years.
(d) Calculate the Q-value in MeV of the reaction $\mathrm{Al}^{27}(d, \alpha) \mathrm{Mg}^{25}$. Given, masses of $\mathrm{Al}^{27}, \mathrm{Mg}^{25}, \alpha$ and d are 26.9901 amu, 24.9936 amu, 4.0039 amu and $2 \cdot 0147 \mathrm{amu}$, respectively.
(e) Calculate the interplanar spacing for (3 2 1) planes in a simple cubic lattice with lattice constant $4 \cdot 2 \times 10^{-10} \mathrm{~m}$.
(f) In a crystal, a lattice plane cut intercepts of $2 a, 3 b$ and $6 c$ along the crystallographic axes where a, b and c are primitive vectors of the unit cell. Determine the Miller indices of the given plane.
2. (a) Distinguish between excitation and ionization potential.
(b) What is a mass spectrograph? Describe the construction and working principle of Thomson mass spectrograph. Mention two of its important limitations.

$$
2+3+3+1=9
$$

3. (a) State the basic postulates of Bohr's atom model. Name the different spectral series of hydrogen atom and explain their origin on the basis of Bohr's atom model with a suitable diagram. $2+5=7$
(b) State Pauli's exclusion principle. Use this principle to show that the maximum number of electron that can be accommodated in an orbit is $2 n^{2}$ where n is the principal quantum number. $1+3=4$
4. (a) What is mean life of a radioactive element? Establish a relation between mean life and decay constant. $1+3=4$
(b) Briefly describe three processes through which γ-ray interacts with matter.
(c) Describe how neutron was discovered. Write four basic properties of neutron.
5. (a) Explain the construction and working principle of a linear accelerator. Find an expression for the kinetic energy acquired by the ion. What are the limitations of linear accelerator?
(b) What is the function of a moderator in nuclear reactor? Name two substances that can be used as moderator. $2+1=3$
6. (a) Explain the Q-value of a nuclear reaction in terms of rest mass energy of the elements. What are exothermic and endothermic reactions? $2+2=4$
(b) What are primary and secondary cosmic rays?
(c) Establish Duane-Hunt law.
(d) What is the phenomenon of superconductivity?
7. (a) What is packing fraction of a lattice? Calculate the packing fraction of an fcc lattice.
$1+3=4$
(b) For a simple cubic lattice, show that $d_{100}: d_{110}: d_{111}=1: \frac{1}{\sqrt{2}}: \frac{1}{\sqrt{3}}$, where d is the interplanar spacing.
(c) Derive Bragg's law in X-ray diffraction. Will visible light produce diffraction pattern in solid? Explain. $3+1=4$

(5)

8. (a) What are diamagnetic, paramagnetic
and ferromagnetic substances? Give two examples of each. $2+2+2=6$
(b) Define persistent current. 2
(c) What are type-I and type-II
superconductors?
