2021

(July)

PHYSICS

(Honours)

(Atomic and Molecular Spectroscopy,

 Nuclear Physics)[PHYO8(T)]
Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) Calculate the kinetic energy of the α-particle emitted by the decay of ${ }_{86} \mathrm{Rn}^{222}$. Given mass of ${ }_{86} \mathrm{Rn}^{222}$ $=222 \cdot 017531 \mathrm{a} . \mathrm{m} . \mathrm{u}$. Mass of polonium nucleus $=218 \cdot 008930$ a.m.u. Mass of α-particle $=4.002603$ a.m.u.
(b) A substance shows a Raman line at $4567 \AA$ when exciting line $4358 \AA$ is used. Deduce the positions of Stokes and anti-Stokes lines for the same substance when the exciting line $4047 \AA$ is used.
(c) Calculate the wavelength separation between the two component lines which are observed in the normal Zeeman effect. The magnetic field used is 0.4 weber $/ \mathrm{m}^{2}$, the specific charge $=1.76 \times 10^{11}$ coulombs $/ \mathrm{kg}$ and $\lambda=6000 \AA$.
(d) Explain which of the following reactions are allowed or forbidden under conservation of charge, conservation of baryon number and conservation of strangeness :
(i) $\Pi^{+}+n \rightarrow \kappa^{\circ}+\kappa^{+}$
(ii) $\Pi^{-}+p \rightarrow \Lambda^{\circ}+\kappa^{\circ}$
(iii) $\Pi^{-}+p \rightarrow \Pi^{\circ}+\Lambda^{\circ}$
2. (a) What is Zeeman effect? Distinguish between normal and anomalous Zeeman effects. Give the quantum mechanical explanation of the anomalous Zeeman effect with suitable energy-level diagram. $1+2+5=8$
(b) Explain the fine structure of alkali spectra.
3. (a) How is Raman effect explained on the basis of quantum theory? Explain the origin of Stokes and anti-Stokes lines in Raman spectrum.
$3+3=6$
(b) State and explain Franck-Condon principle.
4. (a) Describe Rutherford's experiment on artificial transmutation and write the relevant nuclear reaction. $5+2=7$
(b) Explain Fermi's theory of β-decay. 4
5. (a) State the laws of conservation of charge and baryon number.
(b) What are primary cosmic rays? Discuss the effect of earth's magnetic field on cosmic rays. $3+4=7$
6. (a) Write short notes on the following : $2+2=4$
(i) Atomic Emission Spectroscopy (AES)
(ii) Atomic Absorption Spectroscopy (AAS)
(b) Explain what is Larmor's precession. 4
(c) Calculate the Lande g-factor for ${ }^{3} P_{1}$ level of an atom. 3
7. (a) Discuss rotational fine structure of electronic vibrational transitions. What is Fortrat diagram? $7+2=9$
(b) How does a neutrino differ from an antineutrino? -
8. (a) Describe the Stern-Gerlach experiment. 6
(b) Explain the salient features of nuclear shell model. What are the magic numbers?
$3+2=5$
