2/EH-73 (ii) (Syllabus-2015)

2022

(May/June)

COMPUTER SCIENCE

(Elective/Honours)

(Digital Logic Design and Computer Architecture)

(CS-201T)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

UNIT-I

1. (a) Subtract the following decimal numbers by using 9's complement:

357 - 210

(b) Subtract the following decimal numbers by using 9's complement:

21 - 37

1

2

			1
(c)	Subtract the following binary numbers by using 1's complement:	1	(j) Obtain the 9's complement of the following decimal number:
	110-100		12
(d)	Subtract the following binary numbers by using 1's complement:	2	(k) Obtain the 2's complement of the following binary number: 2
•	100 – 110		
(e)	Convert the following binary number to base 10:	1	2. (a) Subtract the following decimal numbers by using 9's complement:
	1111	1	580 – 5
(f)	Convert the following binary number to base 8:	1	(b) Subtract the following decimal numbers by using 9's complement: 2
			18 – 47
	1111		(c) Why is NAND called as a universal gate? 2
(g)	Convert the following binary number to base 10:	1	(d) Explain the following logic gates in brief:
	1.1		(i) AND
(h)	Convert the following hexadecimal number to base 2:	1	(ii) OR
• •			(e) Subtract the following binary numbers
	AB		by using 1's complement:
<i>(*</i>)			110-100
(i)	Convert the following hexadecimal number to base 10:	2	(f) Subtract the following binary numbers by using 1's complement:
	B2		100-110
	•		100 110

1

	(g)	Draw the truth table of a 2-input EX-OR		4.	(a)	Define canonical form.	!	
		gate.	2		(b)	What is a Don't Care condition?		
	(h)	Obtain the 9's complement of the following decimal number:	1		(c)	Given an expression $(A+B)C$, use logic gates to draw its logic diagram.	;	
		99			(d)	Given an expression $AC+BD$, derive its canonical form.)	
	(i)	What is the 1's complement of the binary number 10?	1		(e)	Explain the following in brief: 2×4=8	,	
		binary number 107	1 .			(i) Sum of Products		
		UNIT—II				(ii) Product of Sums		
3.	(a)	Simplify the following:	5			(iii) Minterm		
J.	(u)	$F(A, B, C, D) = \Sigma(0, 1, 2, 3, 12, 13, 14, 15)$		•		(iv) Maxterm		
	<i></i> .							
	(b)	Express the following as a product of maxterms:	2			UNIT—III		
		(XY+Z)(X+YZ)	_	5.	(a)	Use Booth's algorithm to perform the multiplication $(-15) \times (+13)$. Assume that		
	(c)	Use the given Don't Care conditions				size of the registers is 5 bits.		
		d(A, B, C, D) to simplify the following:			(b)	Draw the truth table of a half adder.	;	
		$F(A, B, C, D) = \Sigma(0, 1, 2, 6, 10, 14)$ $d(A, B, C, D) = \Sigma(3, 7, 11, 15)$			(c)	Derive the expression for the sum of a half adder.		
		Make use of a Karnaugh map.	5	6.	(a)	Draw the flowchart of Booth's algorithm. 7	,	
	(d)	Draw a logic diagram for the expression $AB+C$ using only NAND gates.	2	•	(b)	The contents of a 4-bit register A is 1101.		
	(e)	What is De Morgan's theorem?	1			Show the contents of the register A after one logical left shift.	2	

(c)	(c) Explain the following in brief:					
	(i) Logical Left Shift					
	(ii) Arithmetic Left Shift					
	(iii) Arithmetic Right Shift					
	Unit—IV					
	T flip-flops to design a counter that at 0, 1, 2, 3, 4, 5, 6, 7.					
	wer the following with respect to this nter:					
(a)	Draw the state diagram.	1				
(b)	Derive the excitation table.	5				
(c)	Use the above excitation table to draw three separate Karnaugh maps.	3				
(d)	Use the above Karnaugh maps to derive three input equations.	3				
(e)	Draw a logic diagram for the above counter.	3				
(a)	Explain the following in brief: 2×2 (i) Flip-flop (ii) Addressing mode	=4				

(b) Fill in the following truth table for SR Flip-Flop using NAND gates:

S	R	Q^t	Q^{t+1}
0	0		_
0	1	_	-
1	0	_	-
1	1		

where Q^t is the present state and Q^{t+1} is the next state. Explain indirect addressing mode. 2

Draw the characteristic table of T-flop. Draw the excitation table of D-flop. 3

Unit-V

- 9. Explain the following three modes 5×3=15 input/output transfer:
 - Programmed I/O
 - Interrupt Initiated I/O (b)
 - Direct Memory Access (DMA) (c)
- Explain the following in brief: $2 \times 2 = 4$ 10. (a) (i) Primary memory
 - (ii) Secondary memory

2

8.

7.

(c)

(b)	Explain the following in brief: 2×2	=4	
	(i) Associative mapping		
	(ii) Direct mapping		
(c)	What is set-associative mapping? Explain.	3	
(d)	What is 'Hit Ratio'?		
(e)	Explain 'locality of reference'.		
(f)	Why is associative memory also called as content addressable memory (CAM)?	1	