4/EH-24 (iv) (Syllabus-2015)

2022

(May/June)

PHYSICS

(Elective/Honours)

(Atomic, Nuclear and Solid-State Physics)

[PHY04 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) What is half-life of a radioactive material? A radioactive sample has its half-life equal to 60 days. Calculate (i) its decay constant, (ii) its mean life and (iii) the time required for $\frac{3}{4}$ of the original number of atoms to disintegrate.
 - (b) Calculate the (i) ionization potential and (ii) first excitation potential of the hydrogen atom.

Given,
$$\hbar c = 197.3 \text{ MeV fm}$$
, $\frac{e^2}{4\pi\epsilon_0} = 1.44$,

$$m = 938 \text{ MeV}/c^2$$
.

4

4

(Turn Over)

(c)	If the magnetization and flux density of a magnetic material be 3200 A/m and 0.005 Wb/m ² , calculate the susceptibility and relative permeability of the material.
(a)	Describe Millikan's oil-drop method for the determination of electronic charge. 6
(b)	Discuss the construction of Bainbridge mass-spectrograph. 3
(c)	Using Pauli's exclusion principle, show that the maximum number of electrons that can be accommodated in any state of principal quantum number n is $2n^2$.
(a)	State Moseley's law. Discuss how it has been utilized in removing some of the defects of periodic table. 1+2=3
<i>(b)</i>	What is Compton effect? Obtain an expression for the Compton shift using non-relativistic mechanics only. 1+4=5
(c)	What is population inversion in laser? Explain why laser action cannot occur without population inversion between atomic levels. 1+2=3

o (Continued)

	1		
4.	(a)	Explain the principle of working and theory of a betatron. 2+3	=5
	(b)	Explain the source of stellar energy and estimate the energy obtained therein.	3
	(c)	Explain the property of east-west effect of cosmic rays.	3
5.	(a)	What is meant by pair production? What is the maximum energy requirement of the agent causing the phenomenon?	3
	(b)	Explain the principle of action of scintillation counter. Describe their usefulness in the study of nuclear radiation.	; = 4
	(c)	Explain the terms 'multiplication factor' and 'chain reaction' in nuclear fission. 2+2	;=4
6.	(a)	What is controlled nuclear chain reaction? Describe how this can be achieved in a nuclear reactor indicating the function of each part of the reactor. 1+4	\= <u></u> 5
	(h)	Explain briefly the important features of	

the shell model of nuclei. What are its

limitations?

2+2=4

2.

3.

(c) What are the broad classifications of elementary particles? Mention which of them take part in strong or weak

2

interaction.

7.	(a)	What do you understand by packing fraction of a crystal? Calculate the packing fraction for a face-centred cubic (f.c.c.) structure. 1+3=4
	(b)	Derive the expression for the interplanar spacing of the set of (hkl) planes of a cubic lattice.
	(c)	Explain the distinction among conductors, semiconductors and insulators in terms of band gap. 3
8.	(a)	Discuss the experimental evidence on the occurrence of superconductivity in metals and alloys.
	(b)	What is magnetic susceptibility? Mention any two points to distinguish among diamagnetic, paramagnetic and ferromagnetic materials. 1+3=4
	(c)	What is Meissner effect? Distinguish between type I and type II superconductors. 1+3=4
		a. a. a.