6/H-64 (viii) (Syllabus-2015)

2022

(May/June)

BIOCHEMISTRY

(Honours)

(Molecular Biology)

(BCHEM-602)

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any four questions

- 1. (a) Briefly explain the features that make DNA an ideal genetic material.
 - (b) In 1944, a series of experiments first demonstrated DNA as the carrier of genetic information. Summarize and explain the experiments.
 - (c) What is chromatin? Explain how chromatin compaction is achieved in genome assembly.

3

6

5

						•	
2.	(a)	sequences in mammals.	4	5. ((a)	Very briefly explain the following: 1×6- (i) Negative regulation	- 6
	(b)	What are micro-satellite sequences? Briefly explain.	2			(ii) Positive regulation (iii) Repressor	
	(c)	Compare and contrast DNA replication process in prokaryotes and eukaryotes in detail.	8			(v) Operon	
3.	(a)	Explain in detail the composition of DNA-dependent RNA polymerase and the specific role of each associated subunits.	6	((b)	(vi) Polycistronic mRNA What are inducible and constitutive genes? Explain their biological significance in prokaryotes.	4
	(b)	In gene transcription, explain what are template and non-template strands.	2	.((c)	Describe the specific role of CRP in E. coli gene expression regulation.	4
	(c)	Describe the features and roles of commonly occurring non-protein coding RNAs.	6	6.	(a)	What is a cloning vector and its composition? Mention the commonly employed vectors and their features.	4
4.	(a)	Explain the hypothesis put forward by Crick towards genetic code degeneracy in detail and its significance.	6		(b)	What is DNA amplification? Mention the technique in detail that can amplify DNA fragment <i>in vitro</i> .	7
	(b)	Describe the mechanism of translation initiation in prokaryotes with illustrations in detail.	8		(c)	Briefly list the potential applications of quantitative PCR.	3

7. (a) What is bioinformatics? Briefly explain its main components.

4

(b) Explain in what ways bioinformatics has revolutionized the study of genes and proteins.

4

(c) Mention and explain any two available online bioinformatics databases that can be utilized in mining genomic and proteomic informations.

6

* * *