6/H-23 (x) (Syllabus-2019)

2022

(May/June)

CHEMISTRY

(Honours)

(Part—A: Physical Chemistry-II)

(Chem-H-603)

Marks: 38

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Derive the phase rule from the concept of chemical potential.
 - (b) Derive the expression for the chemical potential of a component in an ideal mixture.

OR

- **2.** (a) Define chemical potential. Derive the variation of chemical potential with temperature and pressure. 1+2+2=5
 - (b) Explain Nernst heat theorem. How does it lead to the enunciation of the third law of thermodynamics? 2+3=5

5

5

3.	(a)	Discuss	the Debye-Hückel theory for	
		strong	electrolytes and write the	
		relevant	Onsager equation.	6

(b) Derive the expressions for ΔG and ΔH in terms of EMF of a cell. 2+2=4

(A) one careful demonstration and best a OR

The second of the second

- 4. (a) Explain potentiometric titrations taking the example of an acid-base titration. 3
 - (b) Write notes on the following: 2×2=4

 (i) Liquid junction potential
 - (ii) Concentration cells
 - (c) Define mean ionic activity coefficient.

 Calculate the mean ionic activity coefficient of 0.01 molal NaCl solution.

1+2=3

(Continued)

- 5. (a) Discuss briefly the spectral distributions of blackbody radiation and mention the interpretations therein.
 - (b) Explain Compton effect and its physical significance. What is Compton shift?

 1½+1½+1=4

OR

- 6. (a) Solve the Schrödinger equation for a particle in a one-dimensional box of length a.
 - (b) Discuss photoelectric effect and Einstein's equation for this effect. 2+2=4

5

- 7. (a) Define molecular partition function.

 Show that the total molecular partition function (Q) is the product of individual partition functions.

 1+3=4
 - (b) Define entropy and probability. Derive the relationship between them. 2+3=5

OR

- 8. (a) Write the mathematical expression for Boltzmann distribution for degenerate and non-degenerate states and define the terms involved.

 1½+1½=3
 - (b) Write the expressions for translational, rotational and vibrational partition functions in one dimension and give the meaning of the terms involved. 1+1+1=3
 - (c) Calculate the translational partition function of NO molecule at 300 K in a volume of 1000 m³, assuming the gas to behave ideally. Given,

$$k = 1.38 \times 10^{-16} \text{ gcm}^2 \text{s}^{-2},$$

 $h = 6.625 \times 10^{-27} \text{ gcm}^2 \text{s}^{-1}$

* * *

22D—1800**/815**

6/H-23 (x) (Syllabus-2019)

3