6/H-29 (x) (Syllabus-2019)

2022

(May/June)

MATHEMATICS

(Honours)

(Advanced Algebra)

(H-62)

Marks: 45

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer three questions, taking one from each Unit

UNIT-I

1. (a) Let H be a non-empty subset of a group G. Prove that H is a subgroup of G if and only if $\forall a, b \in H$ and $\forall a \in H$, $a^{-1} \in H$. Also prove that H is a normal subgroup of G if and only if $gHg^{-1} = H$, $\forall g \in G$.

(Turn Over)

2.

3.

22D/**827**

					•	
(b)	 Prove the following assertions: 3+3= (i) If H is a subgroup of a group G such that x² ∈ H for all x ∈ G, then H is a normal subgroup of G. (ii) If N and M are normal subgroups of a group G such that N ∩ M = {e}, where e is the identity element of G, then nm = mn for all n ∈ N and for all m ∈ M. 	=6	((b)	Define the terms prime and irreducible elements of an integral domain.	2
			((c)	If $f: R \to S$ is a ring homomorphism and I is an ideal of R , then is it necessarily true that $f(I)$ is an ideal of S ? Answer with justification.	3
				(d)	Prove that in a principal ideal domain, every irreducible element is a prime element.	5
(a)	Show that the characteristic of an integral domain is either zero or a prime number.	5	4.	(a)	Let K be a field, R a ring and $f: R \to K$ be an onto ring homomorphism. Show that $\ker(f)$ is a maximal ideal of R.	5
(b)	Show that every field is an integral domain.	4		(b)	Is the intersection of two maximal ideals of a principal ideal domain R again a	
(c)	Are the following statements true or false? Answer with brief justification:	=6			maximal ideal of R? Justify your answer.	5
	3×2 (i) If A and B are ideals of a ring such that $A \cap B = \{0\}$, then $\forall a \in A$, $\forall b \in B$; $ab = 0$.			(c)	Show that a maximal ideal of a ring is a prime ideal. Is the converse true? Justify your answer. 4+1	=5
	(ii) Every prime ideal of an integral domain is necessarily a maximal				UNIT—III	
	ideal. Unit—II		5.	(a)	Let V be a vector space over a field F and let V_1 , V_2 be subspaces of V . Then show that	
(a)	Show that if K is a field and R is a ring,				$W = V_1 + V_2 = \{ v = v_1 + v_2 : v_1 \in V_1, \ v_2 \in V_2 \}$	
	then any non-zero homomorphism $f: k \to R$ is necessarily one-one.	5			is a subspace of V.	;

(Continued)

22D/**827**

(b) Determine the values of a in \mathbb{R} for which the vectors (0, 1, a), (1, a, 1), (a, 1, 0) are linearly dependent in \mathbb{R}^3 .

Find the characteristic roots and characteristic vectors of the matrix

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

6

4

6. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

 $T(x, y, z) = (x + y, y + z, 5z), \forall (x, y, z) \in \mathbb{R}^3$

Find the matrix of T w.r.t. the bases $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $\{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$

in \mathbb{R}^3 .

(c)

5

(b) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

f(x, y, z) = (x, x + y, x + y + z)

Show that f is a linear transformation. Also find image of f and kernel of f.

7

(c) Define the terms (i) minimum polynomial, (ii) characteristic root and (iii) characteristic vector of a linear transformation.

3

 $\star\star\star$

22D-1600/827

6/H-29 (x) (Syllabus-2019)