6/H-29 (viii) (e) (Syllabus-2015)

2022

(May/June)

MATHEMATICS

(Honours)

(Discrete Mathematics)

(HOPT-62 : OP5)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- 1. (a) Prove that $7^n 2^n$ is divisible by 5 for all $n \in \mathbb{N}$.
 - (b) If x_1 , x_2 and x_3 are non-negative integers, find how many solutions does the equation $x_1 + x_2 + x_3 = 11$ have.
 - (c) Find the general solution and the unique solutions of the second-order homogeneous recurrence relation

$$a_n = 5a_{n-1} - 6a_{n-2}$$
 with initial condition $a_0 = 2$, $a_1 = 8$.

(Turn Over)

5

5

(a) Find which regular polygon has the same number of diagonals as sides. 5 Find the numeric function corresponding the generating function 5 Find the number of rectangles in an $n \times n$ square. 5 UNIT-II 3. (a) Consider the set \mathbb{Z} of integers. Suppose xRy if and only if $x = y^r$ for some positive integer r. Show that R is a partial order on Z. 5 (b) Let D_{30} denotes the poset of all divisors of 30. Show that D_{30} is a lattice. Is it a distributive lattice? Justify. 5 Show that the dual of a distributive lattice is a distributive lattice. 5 Draw the Hasse diagram for the positive

(b)	Give examples with justification of the following: 2+2=4
**	(i) Two lattices which are isomorphic
. 4.	(ii) Two latices which are not isomorphic
(c)	Let (L, \leq) be a lattice and $a, b, c \in L$. Show that
	(i) $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$
	(ii) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$ 3+3=6
\$	UNIT—III
(a)	Prove the following identities: 2+2=4
	(i) $a+(a'\cdot b)=a+b$
٠	(ii) $a'+(a\cdot b)=a'+b$
(b)	Construct a logic circuit corresponding to the Boolean function
	f(x, y, z) = xyz + xy'z 5
(c)	Show that a lattice L is modular if and only if for any a , b , $c \in L$, $a \lor [b \land (a \lor c)] = (a \lor b) \land (a \lor c)$.
(a)	Simplify the following: 5
	(i) $(ab'+c)'$
	(ii) $(a+b')(a'+b)(a'+b')$

divisors of 45.

5

б.

5.

(b) (c)	Show that in a Boolean algebra	5
	Unit—IV	
(a)	Let the set of vertices be $V = \{1, 2, \dots, 10\}$. Suppose a vertex u is adjacent to a vertex v if and only if $u + v$ is an even integer. Draw the graph and find the minimum degree δ and the	
(b)	Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{n}$	6 4
(c)	Prove that a connected graph G remains connected after removing an edge e from a circuit.	
	a circuit.	5
(a)	Prove that a graph is bipartite if and only if it contains no cycle of odd length.	5
(b)	Give examples of the following: 3+3=6	5
	(i) A graph that has a Hamiltonian circuit but no Eulerian circuit	
•	(ii) A graph that has an Eulerian circuit but no Hamiltonian circuit	

(c)	Show that a graph is K-regular on
	n-vertices if and only if Kn is even and
	$n \ge K + 1$.

UNIT-V

- 9. (a) Show that a graph with *n*-vertices and $\delta \ge \frac{n-1}{2}$ is a connected graph.
 - (b) Let G be a block with $\delta \ge 3$. Show that there is a vertex v such that G-v is also a block.
 - (c) Give examples of the following: 3+3=6
 - (i) A graph having 2 cut sets
 - (ii) A graph having edge connectivity and vertex connectivity same
- 10. (a) Show that the minimum number of vertices separating two non-adjacent vertices u and v is the maximum number of disjoint u-v paths.
 - (b) A tree has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of degree 3. Find the number of edges in the tree.

(Turn Over)

5

6

5

8.

7.

(c) State with justification whether the following statements are true or false:

2+2=4

- (i) Every graph has a cut vertex
- (ii) Every graph has a cut edge

 $\star\star\star$