6/H-24 (viii) (Syllabus-2015)

...

2019

(April)

PHYSICS

(Honours)

(Atomic and Molecular Spectroscopy, Nuclear Physics)

[PHY 08 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) Calculate the Binding energy per nucleon of U²³⁸ in MeV. Taking—

 mass of neutron = 1:0087 a.m.u.

 mass of proton = 1:0078 a.m.u.

 mass of U²³⁸ = 238:0508 a.m.u.
 - (b) Find the maximum kinetic energy of the electron emitted in the beta decay of free neutron. The neutron-proton mass difference in 1.20 MeV.

D9/12- difference is 1.30 MeV. (Turn Over)

•		(2)				(3)
	(c)	Calculate the value of force constant of the bond in CO molecule. The spacing between vibrational energy level is			(c)	Give the reason why for any filled shell of an atom the total magnetic moment is zero.
	(d)	8.45×10^{-2} eV. Calculate the Lande g-factor for the level 3D_3 .	3		(d)	What is the wavelength of photon emitted by hydrogen atom during transition from $2S \rightarrow 1S$?
2.	(a)	Describe the effect of the earth magnetic	6	5.	(a)	spectra of diatomic molecule.
		What are baryon and lepton number?			(b)	Explain which of the lollowing
	(c)	Show with example, that in any nuclear reaction they are conserved. What do you understand by mean, hard and soft component of cosmic rays?	1		(c)	rotation spectra in infrared region: NO, N ₂ , HCl, CH ₄ What is 'null line' in vibrational spectra? There for R-branch
3.	(a) (b)	Discuss Gamow's theory of alpha decay.	6		(d)	Write the wave-number for
	(c)	elements but Pu ²³⁹ are fissionable nuclear reactor. Why? What are Thermal reactor and breeder reactor?	3	6,	(a) (b)	of inertia of two nuclei about the case of common centre of mass in the case of the HCl molecule.
4.	(a)	Using Pauli's exclusion principle, show that the P sub-shell $(l=1)$ in an atom can contain a	3		·	rotator with
	(b)	can contain a maximum of 6 electrons. In L-S coupling, show how many number of transitions is permitted from $2P_{3/2}$ to $2S_{1/2}$ due to weak magnetic field.			(c)	attributed to the symmetrical strong at 4768 Å. when vibration is observed at 4768 Å. when vibration is observed at frequency 3
Dōl	1758	- 440111		D91	1758	of the vibration. (Turn Over)

- 7. (a) Describe the Stern-Gerlach experiment. How does it support the concept of 6+2=8 vector atom model?
 - (b) Explain the fine structure of Alkali spectra.
- What is artificial radioactivity? How can (b) stable nuclei be made radioactive? Show that 1 atomic mass unit is (c)

What is Geiger-Nuttall law?

- equivalent to 931.5 MeV. What is the range of an alpha particle? (d)
 - * * *

4.

8. (a)

6/H-24 (vii) (Syllabus-2015)

2019

(April)

PHYSICS

(Honours)

(Condensed Matter Physics)

[PHY 07 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) The number of conduction electrons per c.c. is $24 \cdot 2 \times 10^{22}$ in beryllium and 0.91×10^{22} in cesium. If the Fermi energy of conduction electrons in Be is 14.44 eV, calculate that of cesium.
 - Find out the reciprocal lattice vectors for a space lattice defined by the following (b) primitive translation vectors:

rimitive translation vector
$$\vec{a} = 5\hat{i} + 5\hat{j} - 5\hat{k}$$
, $\vec{b} = -5\hat{i} + 5\hat{j} + 5\hat{k}$ and $\vec{c} = 5\hat{i} - 5\hat{j} + 5\hat{k}$

Also find out the volume of the primitive

(Turn Over) cell.

^{D9}/1757

	(c)	Calculate the change in boiling point of water when the pressure is increased by 1 atmosphere. Boiling point of water is 373 K, specific volume of steam = $1.671 \mathrm{m}^3 \mathrm{kg}^{-1}$ and latent heat of steam = $2.268 \times 10^6 \mathrm{J kg}^{-1}$.
2.	(a)	variables. Give examples 11/4+11/2=3
	(b)	Deduce Clausius-Clapeyron equation from Maxwell's thermodynamic relations.
	(c)	Derive first and second $T dS$ equations.
3.	(a)	What is Gaussian distribution? Obtain an expression for it. 2+5=7
	(b)	State and explain the principle of equal a priori probability.
	(c)	statistical physics.
4.	(a)	State and prove Liouville's theorem. 1+5=6
		Einstein statistics and use it to deduce Planck's law of radiation 1+4=5
5.	(a)	Explain in detail symmetry operations in crystal.
D9/1	757	(Continued)
		•

	(b)	Prove that reciprocal lattice to an f.c.c. lattice is a b.c.c. lattice.			
	(-)	What are Brillouin zones? 2			
	(c)	1 homon2			
	(d)	What is a phonon?			
6. (a) Define Fermi energy $E_{\rm F}$. Explain classification of solids, conductor semiconductors and insulators on basis of band theory.					
	(b)	Explain (i) Hall effect, (ii) Meissner effect. 2+2=4			
	(c)	Explain London interaction in inert gas crystals.			
7.	(a)	cimagnetiSIII.			
	(b)	of paramagnetism.			
	(c)	Explain isotope effect in super- conductivity.			
8.	(a)	Describe in detail about type-I and type-II superconductors. Give examples. 3+1=4			
	(b)	conductivity.			
		(Turn Over)			

D9/1757

	Explain high conductivity.		temperature	super-
(d)	The crit	ical ten	iperature of a	a super-

(d) The critical temperature of a super-conductor at zero magnetic field is T_c . Determine the temperature at which the critical field becomes half of its value at 0K.

**+