4/EH-24 (iv) (Syllabus-2015)

2019

(April)

PHYSICS

(Elective/Honours)

(Atomic, Nuclear and Solid State Physics)

[PHY 04 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) Calculate the (i) ionisation potential and

(ii) first excitation potential of the hydrogen atom taking

$$\hbar c = 197 \cdot 3 \text{ MeV fm}$$

$$\frac{e^2}{1 - 1} = 1.44 \quad m = 938 \text{ MeV } / \text{C}^2$$

4

(b) Calculate the energy generated in MeV when 0.1 kg of 3Li is converted into 4_2 He by proton

(Turn Over) D9/1673

1 1 1 may 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	bombardment. [Given: masses of ${}_{3}^{7}\text{Li}$, ${}_{2}^{4}\text{He}$ and ${}_{1}^{1}\text{H}$ in amu are 7.0183 , 4.0040 and 1.0081 respectively]	
(c)	Assuming that each silver atom provides one conduction electron, calculate (i) the density of electrons and (ii) the mobility of electrons in silver. [Given: the density of silver = 10.5×10^3 kg/m ³ , the atomic weight of silver = 107.9 , the resistivity of silver at 20° C is $1.47 \times 10^{-8} \Omega$ m]	
2. (a)	Discuss the construction and theory of Bainbridge mass spectrograph. 2+2=4	
(b)	What are these quantum numbers which specify the energy state of the electron in an atom? Give their significance.	
(c)	produced in the Coolidge tube	
	Give the theory of Millikan's oil drop method for determination of electronic show that the result obtained therein,	
D9/1673	lighter than the lightest hydrogen atom. 4+1=5	

(Continued)

		(3)
	(b)	Deduce Moseley's law and discuss how it has been utilised in removing some of the defects of periodic table. 2+2=4
	(c)	Deduce the exponential law linear absorption coefficient of X-rays 2
4.	(a)	
	(b)	Explain the source of stellar therein.
	(c)	Explain the property
5.	. (a)	What is the principle of charged per detectors? Explain the construction and detectors? Explain the construction 1+4=5 working of an ionization chamber.
	(b)	What are the basic sharp and an atomic nucleus? a liquid drop and an atomic nucleus? On the basis of liquid-drop model, give On the basis of liquid-drop model, give a qualitative explanation for nuclear 2+4=6
(5. (a	fission. Discuss the similarities and differences of primitive cells and unit cells. What of primitive cells and unit cells they are Miller indices? How are 2+2+2=6
	(determined? b) Discuss Laue's treatment of X-ray diffraction and hence obtain the Laue's equations. (Continued)
I	9/1	6 73

- 7. (a) Give the difference between conductors, semi-conductors and insulators in terms of energy bands.
 - (b) What are the inadequacies of the free electron model?(c) What is Main

4

3

3.

- (c) What is Meissner effect? Show that a superconductor behaves as a perfectly diamagnetic substance.

 1+3=4
- 8. (a) What is population inversion? Describe the methods of pumping. What is the role of the cavity to achieve population inversion in a laser? 1+3=4
 - (b) Name the three-broad classes of elementary particles and discuss their chief properties.

 (c) Discuss 1.1.
 - (c) Discuss briefly about symmetry in crystals with reference to translational, rotational and inversion symmetry.