## 2/H-77 (ii) (Syllabus-2015)

2019

(April)

## BIOTECHNOLOGY

( Honours )

## ( Biological Chemistry )

*Marks*: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1, which is compulsory and any four from the rest

- 1. (a) Write down the reaction catalyzed by succinyl CoA synthetase in TCA cycle and explain how GTP is generated in this step. 2+2=4
  - (b) Give one example for each of the following with chemical structure: 2×3=6
    - (i) Amino acid with non-polar R group
    - (ii) Aldopentose
    - (iii)  $C_{1\delta}$  cis- $\Delta^9$  fatty acid
  - (c) What role(s) do prosthetic groups such as heme and iron-sulfur clusters play in oxidative phosphorylation?

2

- 2. (a) What are the sources of intracellular osmolarity? What mechanisms does an animal cell employ to regulate its osmolarity?

  3+5=8
  - (b) Do the mechanisms that you described above influence the membrane potential? Substantiate your answer.
- 3. What is the proton motive force (pmf) in mitochondria? How is pmf related to ATP?

  6+5=11
- 4. (a) Derive the Henderson-Hasselbalch equation and state its significance. 5+3=8
  - (b) The  $pK_a 1$ ,  $pK_a 2$  and  $pK_a R$  values of aspartic acid are 2.09, 9.82 and 3.86 respectively. Calculate its isoelectric point (pI).
- 5. Derive the Michaelis-Menten equation and illustrate how the affinity of an enzyme for its substrate can be measured by the equation.

  8+3=11
- 6. Trace the steps of β-oxidation of fatty acids and explain how the complete oxidation of palmitate yields 129 ATP molecules.
  6+5=11

- 7. How is NADPH generated in plant chloroplasts? What is its role in  $CO_2$  fixation? 8+3=11
- 8. (a) Why do allosteric enzymes show deviations from Michaelis-Menten kinetics?
  - (b) Name the allosteric modulators of phosphofructokinase and explain their key roles in regulation of glycolysis. 6

\*\*\*