2/EH-28 (ii) (Syllabus-2015)

2019

(April)

STATISTICS

(Elective/Honours)

(Probability Distribution and Statistical Inference)

[STEH-2 (TH)]

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any five questions, taking one from each Unit

Unit—I

- 1. Derive Poisson distribution as a limiting form of bionomial distribution. Hence, find β_1 and β_2 of the distribution. (Notations have their usual meanings).
- 12
- **2.** (a) Obtain moment generating function of geometric distribution and hence obtain its mean and variance.

6

D9/1602

(Turn Over)

(l	Let X_1 and X_2 be independent r.v.s each having geometric distribution $q^k p$; $k = 0, 1, 2, \dots$. Obtain the conditional distribution of X_1 , given $X_1 + X_2$.	6	 (c) Write a brief note on 'goodness of fit' and 'chi-square probability curve'. 4 6. Write notes on the following: 5½×2=11 (a) Weak law of large numbers and its
3. (a	UNIT—II a) Obtain the mode, median and moment		applications (b) Central limit theorem and its
•	generating function of normal distribution.	9	(b) Central limit theorem and its application
(I	b) Write briefly the importance of normal distribution.	2	Unit—IV
4. (0	را الاستاد	4	7. Define the following:
•• (0	 Write the assumptions to derive bivariate normal distribution and also write its density function. 	5	(a) Likelihood function and method of maximum likelihood and its properties 5
(Ł) Obtain the moment		(b) Method of moments 3
	of bivariate normal distribution.	6	(c) Minimum variance unbiased estimation and its properties 3
5. (a	UNIT—III		8. (a) In random sampling from normal
•	distribution and distribution of functions of random variables? What is chi-sen		population $N(\mu, \sigma^2)$, find the maximum likelihood estimators for
(E		3	(i) μ when σ^2 is known; (ii) σ^2 when μ is known;
	the sum of independent chi-square variates is also chi-square variate.	4	(iii) the simultaneous estimations of μ and σ^2
D9/16		d)	D9/1602 (Turn Over)

	(b)	Find the maximum likelihood estimate for the parameter λ of the Poisson distribution.	5
		UnitV	
9.	(a)	What is 'hypothesis testing'? What do you mean by one-tailed and two-tailed tests?	3
	(b)	Write a note on p-values.	4
	(c)	Write briefly the procedure for testing of hypothesis.	4
10.	Write notes on Large sample tests for: (a) single mean, (b) single proportion and (c) difference of two means. Write their 95% confidence limits. 2+3+3+3*		11