CS501T and CS501P: Operating Systems and Introduction to Linux

Objective:

The main objective of this paper is to introduce the students to a layer of software called the Operating System, whose job is to manage all the devices of a computer system and provide user programs with a simple interface to the hardware. This paper will familiarize the students with the concepts of processes, memory management, file management, Input/Output management and the potential problem of deadlocks. It will also help students to learn various Unix/Linux commands and teach them to write shell scripts while working in the Unix/Linux environment.

Outline of the Course

Minim	um Class I	Hours	Exam ti	me (Hours)			Marks		
		1	1 1		The	eory -	Prac	tical	Total
Theory	Practical	Total	Theory	Practical	External	Internal	External	Internal	LOIM
70	30	100	2	3	45	15	30	10	100

TT :4	Topic	Minimum Class Hours			Marks
Unit	Topic	Theory	Practical	Total	(Theory)
I	Concepts & Processes	15	-	15	09
II	Deadlocks	12	-	15	09
III	Memory Management	15	-	12	09
IV	File Systems and Input/Output	15	-	15	09
V	Linux Commands and Shell Programming	13	· 30	43	09
	Total	70	30	100	45

Detailed Syllabus

Unit I: Concepts & Processes

15 hours

Operating System objectives and functions, Booting the computer, Operating System concepts (Processes, Address Spaces, Files, I/O, The Shell), System Calls for Process Management, Types of Operating Systems (Mainframe Operating Systems, Multiprocessor Operating systems, Personal Computer Operating systems, Embedded Operating systems, Real Time Operating systems), Introduction to Processes (The Process Model, Process Creation, Process Termination, Process States, Implementation of Processes), Process Hierarchies. Communication (Race conditions, Critical Regions, Mutual Exclusion with Busy Waiting (Lock variables, Peterson Solution, TSL instruction), Sleep and Wakeup, Semaphores, Message Passing), Process Scheduling (First come First serve, Shortest Job First, Priority Scheduling. Priority Scheduling, Multiple Queues, Round Robin Scheduling), Classical IPC problems (The Dining Philosophers Problem, The Sleeping Barber Problem).

Unit II: Deadlocks

12 hours

Resources, Introduction to Deadlocks (Conditions for Deadlock, Deadlock modeling), Deadlock detection and recovery (Deadlock detection with one resource of one type, Deadlock detection with multiple resources of each type, Recovery from Deadlock), Deadlock avoidance (Resource trajectories, Safe and unsafe states, the Banker's algorithm for a single resource), Deadlock prevention (attacking the mutual exclusion condition, attacking the hold and wait condition, attacking the no-preemption condition, attacking the circular-wait condition).

Unit III: Memory Management

15 hours

Memory Management without Abstraction, A Memory Abstraction (address spaces, Swapping, Managing Free Memory), Virtual Memory (Paging, Page Tables), Page Replacement Algorithms (Not-recently-used, First in first out, Second Chance page replacement algorithm, Least Recently used page replacement algorithm), Design issues for Paging Systems (Page size, shared pages, Mapped Files), Implementation issues(Operating System involvement with Paging, Page Fault Handling, Locking pages in Memory), Segmentation (Implementation of pure segmentation, Segmentation with Paging: MULTICS).

Unit IV: File Systems and Input/Output Management Files systems:

15 hours

Files (File Naming, File structure, File types, File access, File attributes, File operations), Directories (Hierarchical directory systems, Path names, Directory operations), File System Implementation (File system Layout, Implementing Files, Implementing directories, Shared files, Disk space management, File system Backups, File system Consistency, File system Performance), The MS-DOS File system, The UNIX V7 File system.

1/O:

Principles of I/O hardware (I/O devices, Device Controllers, Direct memory access), Goals of the I/O software, I/O software Layers (Interrupt Handlers, Device Drivers, Device independent I/O software, User space I/O software), Disks (Disk hardware (Magnetic disks, RAID), disk arm scheduling algorithms, Error handling), Clocks (Clock hardware, Clock software).

Unit V: Linux Commands and Shell Programming

13 hours

General-Purpose Utilities: cal, date, who, uname, passwd, echo, bc

Navigating the File System: The Three types of Files, Parent-Child relationship, pwd, Absolute pathnames, Relative pathnames, using absolute pathname for a command, cd, mkdir, rmdir, ls Handling Ordinary Files: (cat, cp, rm, mv, more, file, wc, touch), the ls command (ls -l, -d, -x, -a, -R options)

Basic File Attributes: File permissions (Absolute & Relative permissions), chmod, chown The Vi Editor: Three modes, Input Mode, Saving text and quitting, Command mode, the repeat factor, deletion, navigation, pattern search, joining lines, repeating the last command, undoing last editing instructions, search and replace

The Shell: sh command, escaping, quoting, Redirection, /dev/null, /dev/tty, Pipes, command substitution, shell variables

Simple Filters: pr, head, tail, cut, paste, sort, uniq, tr

Regular expressions: grep, Basic regular expressions

The Process: The Shell process, parents and children, ps, system processes, mechanism of process creation, running jobs in background, kill, nice

Shell Programming: Shell scripts, read, command line arguments, exit, special shell parameters (\$1, \$\#, \$@....), logical operators, if, case, expr, while, until, for, string handling (length, substring extraction, character positioning)

Instruction for Paper Setter

The question paper will be set according to the following scheme

	T	Theory Questions		Practical Questions			
Unit	To be set	To be answered	Marks	To be set	To be answered	Marks	
I	2	1	09				
II	2	1	09				
III	2	1	09]·	•		
ĪV	2	1	09				
V	2	1	09	5	3	30	
Total	10	5	45	5	· 3	30	

Recommended Books

Text

1. Andrew S Tanenbaum, Modern Operating Systems, (Third Edition), Pearson Education.

2. Sumitabha Das, UNIX Concepts & Applications, (Second Ed.), Tata McGraw Hill, 2001.

Reference

- 1. William Stallings, Operating Systems: Internals and Design Principles, (Sixth Ed.), Pearson Education, New Delhi.
- 2. **D.M Dhamdhere**, Operating systems A concept based approach, Second Edition, Tata McGraw Hill 2002
- 3. Abraham Silberschatz and Peter B. Galvin, Operating System Concepts, Fourth edition, Addison-Wesley.
- 4. Maurice J. Bach, The Design of the Unix Operating System, Prentice Hall of India, New Delhi.
- 5. Yashvant P. Kanetkar, Unix Shell Programming, BPB Publications.
- 6. Newham Cameron, Learning the Bash Shell, (Third Ed), O'Rielly.

Sample Shell Programs

- 1. Write a script that will accept two file names from the command line, copy the first file to the second file and then display the contents of the combined file. Proper error message should be displayed in case the copy is not successful.
- 2. Write a script that will read a filename from the command line and will change the name of the file to filename.aal where aal is the login_name of the user. (E.g. if the filename is Lucky and the user's login_name is harry then, the filename will be changed to Lucky.harry).
- 3. Peter's basic salary is input through the keyboard. His dearness allowance is 40% of his basic salary, and house rent allowance is 18% of the basic salary. Write a script to calculate his gross salary.
- 4. The distance between two cities (in km.) is input through the keyboard. Write a script to convert and print this distance in meters, feet, inches and centimeters.
- 5. The length and breadth of a rectangle and radius of a circle are input through the keyboard. Write a script to calculate the area and perimeter of the rectangle as well as the area and circumference of the circle.
- 6. If a five digit number is input through the keyboard, write a script to calculate the sum of its digits.
- 7. Write a script that accepts a string inputted though the keyboard and echoes a suitable message if it does not have at least 10 characters.
- 8. In a company, an employee is paid as follows: If his basic salary is less than Rs. 5000, then HRA = 10% of basic salary and DA = 90% of basic. If his salary is either equal or above Rs. 5000, then HRA = Rs. 900 and DA = 98% of basic salary. If the employee's salary is input through the keyboard, write a script to find his gross salary.
- 9. Write a script that will accept a filename from the keyboard and determine whether the file exists. If the file exists then is contents will be displayed else an error message will be displayed.
- 10. Write a script that accepts two directory names as arguments and deletes those files in the second directory that are identical to the files in the first.
- 11. The marks obtained by a student in five different subjects are input through the keyboard. The student gets a division as per the following rules:
 - i. Percentage above or equal to 60 First division
 - ii. Percentage between 50 and 59 Second division

- iii. Percentage between 40 and 49 Third division
- iv. Percentage less than 40 Fail

Write a script to find the division obtained by the student.

- 12. Write a shell script that will prompt the user to enter a character. The script will then determine whether the user entered a lowercase letter, an uppercase letter, a digit or a special symbol.
- 13. If the cost price and selling price of an item is input through the keyboard, write a script to determine whether the seller has made profit or incurred loss. Also determine how much profit was made or loss incurred.
- 14. An integer is input through the keyboard. Write a script to find out whether it is an odd or even number.
 - 15. Write a shell script, which receives any year from the keyboard and determines whether the year is leap or not. If no argument is supplied the current year should be assumed.
 - 16. Write a shell script that will display all the multiples of 5 between 5 and 100.
 - 17. Write a shell script that will display the multiplication table of any given number.
 - 18. Write a shell script to find the factorial of any number entered through the keyboard.
 - 19. Write a script to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12 per hour for every hour worked above 40 hours. Assume that employees do not work for fractional part of an hour.
 - 20. Write a script that converts a decimal number to a hexadecimal number. [Hint: use bc]
 - 21. Two numbers are entered through the keyboard. Write a script to find the value of one number raised to the power of another.
 - 22. Write a script to print all prime numbers between 1 and 150.
 - 23. Write a shell script that displays a list of all files in the current directory to which you have read, write and execute permissions.
 - 24. Write a shell script that will receive any number of filenames as arguments. The shell script should check whether every argument supplied is a file or a directory. If it is a directory it should be appropriately reported. If it is a filename then name of the file as well as the number of lines present in it should be reported.
 - 25. Write a script that will receive any number of filenames as arguments. The script should check whether such files already exist. If they do, then it should be reported. If these files do not exist then check if a sub-directory called *mydirexists* in the current directory. If it doesn't exist then it should be created and in it the files supplied as arguments should get created. If *mydiralready* exists then it should be reported along with the number of files that are currently present in *mydir*.
 - 26. Write a script that accepts a filename as argument and displays the last modification time if the file exists, and a suitable message if it doesn't.
 - 27. Write shell script to convert file names from UPPERCASE to lowercase file names or vice versa.
 - 28. Write a shell script that backs up all files in a directory into a Backup directory for every day of the week. In other words, on Monday all files go in a "Monday" or "1" backup directory, on Tuesday they all go into a "Tuesday" directory, and so forth. If a directory for today already exists, overwrite the files in it, otherwise create the directory.
 - 29. Write a program that checks if any of a list of users given on the command line is logged in. For each user it should say whether he/she is logged in or not.

CS502T: Data Communication and Networks

Objective: Data communication and networks have become an integral part of our lives. This paper intends to give an in depth knowledge about the various layers in the networks, bringing to the fore the various issues involved in the design of such layers, and the various algorithms used to resolve them. There is also an insight into the vistas of data communication. It also introduces the students in the newer areas of computer networking.

Outline of the Course

Minimum Class	Exam Time	Marks			
Hours	(Hours)	External	Internal	Total	
100	3	75	25	100	

Unit	Topic	Minimum Class Hours	Marks	
I	Introduction +Physical Layer	20	15	
П	Data Link Layer	25	20	
· III	Network Layer	20	15	
IV	Transport Layer	15	10	
V	Application Layer	20	15	
	Total	100	75	

Unit 1: Introduction to Computer Networks and Physical Layer 20hrs Introduction to Computer Networks: Use of computer Networks; Wired and Wireless Networks; Types of networks - LAN, MAN, WAN; Network Topology; OSI Reference Model-Outline, Protocol Hierarchies, Design considerations; TCP - IP Reference Model; Comparison

between the two reference models; ATM Virtual Circuits.

Physical Layer: Fourier Analysis (Qualitative), Maximum data rate of a channel: Nyquist's and Shannon's Law, Bit rate and Baud rate; Baseband and Broadband; Guided Transmission Media - Magnetic, Twisted pair, Coaxial cable, Fibre Optics; Wireless transmission, Electromagnetic Spectrum, Radio transmission, Microwave Transmission, Infrared transmission, Frequency Division and Time Division Multiplexing; circuit, Circuit, Message and Packet Switching, Mobile telephone system - First, Second and Third Generation mobile phones.

Unit 2: Data Link Layer

Data Link Layer: Design Issues - Services provided to the higher layer, Framing, Error control, Flow Control; Error Detection and Correction - Error correcting Codes, Error detecting codes; Elementary Data Link Protocols - Unrestricted Simplex Protocol, Simplex Stop-and - Wait protocol, Protocol for Noisy Channel; Sliding Window Protocols - One Bit Sliding Window, Go Back n Protocol, Protocol using Selective Repeat, Examples - HDLC, PPP.

Medium Access Control Sublayer: Channel Allocation Problem - Static and Dynamic channel allocation; Multiple access- Aloha, CSMA; Collision free protocols; Wireless LAN protocols; IEEE standard 802.3 (Ethernet) -Cabling, Encoding, MAC Sublayer, Switched Ethernet, Fast Ethernet, Gigabit Ethernet; IEEE standard 802.11 (Wireless LANS) - MAC sublayer; IEEE standard 802.16 (Broadband Wireless); Comparison of 802.11 with 802.16; Bluetooth -Architecture and Applications, Repeaters, Hubs, Bridges, Switches, Routers and Gateways.

Unit 3: Network Layer

20hrs

Design Issues- Store and forward packet switching, Services provided to higher layer, Connection Oriented and Connectionless services, Virtual circuits and Datagram subnets; Routing algorithms- Shortest Path Routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing, Routing for Mobile hosts, Routing for Adhoc networks; Congestion Control Algorithms - General principles, Load shedding, Jitter control, QoS-Requirements, Techniques to achieve QoS, RSVP; Internetworking- How networks can be connected, Tunnelling, Fragmentation; Internet Protocol - IP addresses, Subnets, CIDR, Network Address Translation; Internet Control Protocol - ARP, RARP, DHCP.

Unit 4: Transport Layer

15 hrs

Design Issues, Services presented to higher layers; Transport protocols - Addressing, Connection Establishment and Release, Flow Control and Buffering, Multiplexing, Crash Recovery

Internet Transport Protocols: UDP - Remote Procedure Call, Real-time transport Protocol; TCP - Service Model, Protocol, Header, Connection Establishment and Release, Connection Management, Transmission Policy, Congestion Control.

Unit 5: Application Layer and Network Security

20hrs

Application Layer: Domain Name System - Namespace, Resource Records, Name Servers, Electronic Mail - Architecture and Services, User Agent, Message Transfer - SMTP, Message Delivery - POP3 and IMAP, Telnet, FTP, HTTP, Architecture of World Wide Web.

Network Security: Cryptography, Substitution Ciphers, Transposition Ciphers, One time pads. Quantum Cryptography, Cryptographic principles; Symmetric Key Algorithms - Data Encryption Standard, Advanced Encryption Standard; Public Key Algorithms - RSA; Digital Signatures - Symmetric Key, Public Key, Message digest, Birthday Attack; Communication Security - Firewalls, Authentication Protocols - Based on shared secret key, Deffie-Hellman Key Exchange.

Instruction to Paper Setter (The question papers will be set according to the following scheme)

Unit -	Questions			
Otivit	To Be Set	To Be Answered	Marks	
I	2	1	15	
. II	3	2	20	
m	2	1 ,	15	
IV .	2	1	10	
v .	2	1	15	
Total	11	6	75	

Text:

- Computer Networks, Andrew S. Tanenbaum, PHI Publication, 4th Edition. 1.
- Data Communications and Networking: Behrouz A. Forouzan, McGraw Hill 4ed. 2.

Reference Books

- Data and Computer Communication, Stalling W, 5ed, PHI (EEE). 1.
- William Stallings, Cryptography and Networking Security Principles and Practice. 2. Pearson Education.